Skip to main content
  • 1287 Accesses

Abstract

Our current understanding of the molecular mechanism of muscle contraction is the product of two millennia of speculation, dissection and theorising, in which the sarcomeres, which constitute the one-dimensional periodic structure of striated muscle, slowly came to the fore. In 1953, A.F. Huxley and H.E. Huxley observed that each sarcomere was composed of two lattices of interdigitating filaments which slid into each other as the muscle contracted, overthrowing the paradigm that contraction was caused by shrinking filaments. The dominant theory of contraction is built around the ‘swinging-lever-arm’ model, in which each myosin motor is attached to its thick filament by a 10 nm heavy chain which acts as a lever-arm, causing sliding when the motor is bound to a thin filament made of actin. This introduction presents an overview of muscle structure, contractile behaviour and different theories of contractility, which form the background for the construction of quantitative theories.

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.

William Shakespeare, Hamlet, Act I, scene 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astumian RD (1997) Thermodynamics and kinetics of a Brownian motor. Science 276:917–922

    Article  CAS  Google Scholar 

  • Baker J, Thomas DD (2000) A thermodynamic muscle model and a chemical basis for A.V. Hill’s muscle equation. J Muscle Res Cell Motil 21:335–344

    Article  CAS  Google Scholar 

  • Carlson FD, Wilkie DR (1974) Muscle physiology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Cooke R, Franks K (1980) All myosin heads form bonds with actin in rigor rabbit skeletal muscle. Biochemist 19:2265–2269

    Article  CAS  Google Scholar 

  • Credi A, Silvi S, Venturi M (2014) Molecular machines and motors, Topics in Current Chemistry, vol 354. Springer, Berlin

    Google Scholar 

  • Elliott GF, Worthington CR (2001) Muscle contraction: viscous-like frictional forces and the impulsive model. Int J Biol Macromol 29:213–218

    Article  CAS  Google Scholar 

  • Elliott GF, Lowy J, Millman BM (1965) X-ray diffraction from living striated muscle during contraction. Nature 206:1357–1358

    Article  CAS  Google Scholar 

  • Fajer PG, Fajer EA, Thomas DD (1998) Myosin heads have a broad orientational distribution during isometric muscle contraction: time-resolved EPR studies using caged ATP. Proc Natl Acad Sci USA 87:5538–5542

    Article  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    Article  CAS  Google Scholar 

  • Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559

    Article  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian F (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol (London) 184:170–192

    Article  CAS  Google Scholar 

  • Goss CM (1968) On movement of muscles by Galen of Pergamon. Am J Anat 123:24–25

    Article  Google Scholar 

  • Haselgrove JC, Huxley HE (1972) X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harb Symp Quant Biol 37:341–352

    Article  Google Scholar 

  • Herzberg O, James MNG (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0Å resolution. J Mol Biol 203:761–779

    Article  CAS  Google Scholar 

  • Hill AV (1953) The mechanics of active muscle. Proc R Soc B141:104–117

    Google Scholar 

  • Hirose K, Wakabayashi T (1988) Thin filaments of rabbit skeletal muscle are in helical register. J Mol Biol 204:797–801

    Article  CAS  Google Scholar 

  • Hitchcock-DeGregori S, Irving T (2014) Hugh E. Huxley: the compleat biophysicist. Biophys J 107:1493–1501

    Article  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Assoc. Inc., Sunderland

    Google Scholar 

  • Hudson L, Harford JJ, Denny RC, Squire JM (1997) Myosin head configuration in relaxed fish muscle: resting state myosin heads must swing axially by up to 150Å or turn upside down to reach rigor. J Mol Biol 273:440–455

    Article  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:257–318

    Article  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Article  CAS  Google Scholar 

  • Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271:1403–1415

    Article  CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  CAS  Google Scholar 

  • Huxley AF, Niedegerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:971–973

    Article  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  CAS  Google Scholar 

  • Ingels NB (1979) The molecular basis of force development in muscle. Palo Alto Medical Research Foundation, Palo Alto, pp 147–162

    Google Scholar 

  • Iwazumi T (1970) A new field theory of muscle contraction. Ph.D. thesis, University of Pennsylvania

    Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  CAS  Google Scholar 

  • Edman KAP (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol (London) 291:143–159

    Article  CAS  Google Scholar 

  • Katz B (1966) Nerve, muscle and synapse. McGraw Hill, Inc, New York

    Google Scholar 

  • Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:120–134

    Article  Google Scholar 

  • Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83:6272–6276

    Article  CAS  Google Scholar 

  • Linari M, Piazessi G, Dobbie I, Koubassova N, Reconditi M, Narayanan T, Diat O, Irving M, Lombardi V (2000) Interference fine structure and sarcomeric length dependence of the axial x-ray pattern from active single muscle fibers. Proc Natl Acad Sci USA 97:7226–7231

    Article  CAS  Google Scholar 

  • Lombardi V, Piazzesi G (1992) Force response in steady lengthening of active single muscle fibres. In: Simmons RM (ed) Muscular contraction. Cambridge University Press, Cambridge

    Google Scholar 

  • Luther PK (2004) Evolution of the muscle lattice in the vertebrate kingdom. Microsc Anal, March: 9–11

    Google Scholar 

  • Luther PK, Squire J (1980) Three-dimensional structure of the vertebrate muscle A-band. J Mol Biol 141:409–439

    Article  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemist 10:4617–4624

    Article  CAS  Google Scholar 

  • MacIntosh BR, Gardner PF, McComas AJ (2006) Skeletal muscle, form and function. Human Kinetics, Champaign

    Google Scholar 

  • Maquet P, Nayler M, Ziggelaar A, Croone W (2000) William Croone: on the reason of the movement of the muscles. Trans Am Philos Soc 90(1):130

    Article  Google Scholar 

  • Martonosi A (2000) Animal electricity, Ca2+ and muscle contraction. A brief history of muscle research. Acta Chim Pol 47:493–516

    CAS  Google Scholar 

  • Matsubara I, Goldman YE, Simmons RM (1984) Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J Mol Biol 173:15–33

    Article  CAS  Google Scholar 

  • Miklos S, Kellermayer Z, Smith SB, Granzier HL, Bustamente C (1997) Folding-unfolding transitions in single titin molecules characterised with laser tweezers. Science 276:1112–1116

    Article  Google Scholar 

  • Moore PB, Huxley HE, DeRosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50:279–288

    Article  CAS  Google Scholar 

  • Needham DM (1971) Machina Carnis: the biochemistry of muscular contraction in its historical development. C.U.P., Cambridge

    Book  Google Scholar 

  • Offer G, Knight PJ, Burgess SA, Alamo L, Padron R (2000) A new model for the surface arrangement of myosin molecules in tarantula thick filaments. J Mol Biol 298:239–260

    Article  CAS  Google Scholar 

  • Oplatka A (1997) Critical review of the swinging crossbridge theory and of the cardinal active role of water in muscle contraction. Crit Rev Biochem Mol Biol 32:307–360

    Article  CAS  Google Scholar 

  • Peachey LD (1965) The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J Cell Biol 25:209–231

    Article  Google Scholar 

  • Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131:784–795

    Article  CAS  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of a myosin subfragment-1: a molecular motor. Science 261:50–65

    Article  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  Google Scholar 

  • Rome LC (2006) Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Annu Rev Physiol 68:193–221

    Article  CAS  Google Scholar 

  • Ruegg JC (2017) Calcium in muscle activation; a comparative approach. Springer, Berlin

    Google Scholar 

  • Squire J (1981) The structural basis of muscle contraction. Plenum, New York

    Book  Google Scholar 

  • Stephenson DG, Stewart AW, Wilson GJ (1989) Dissociation of force from myofibrillar MgATPase and stiffness at short sarcomere lengths in rat and toad skeletal muscle. J Physiol (London) 410:351–366

    Article  CAS  Google Scholar 

  • Sundaralingam M, Bergstrom R, Strasburg G, Rao ST, Rowchowdhury P, Greaser M, Wang BC (1985) Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227:945–948

    Article  CAS  Google Scholar 

  • Suzuki Y, Yasunaga T, Ohkura R, Wakabayashi T, Sutoh K (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396:380–383

    Article  CAS  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424:35–41

    Article  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep J, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312

    Article  CAS  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric model for activation of muscle thin filaments. J Mol Biol 266:8–14

    Article  CAS  Google Scholar 

  • Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Soc 17:17–21

    CAS  Google Scholar 

  • Yomosa S (1985) Solitary excitations in muscle proteins. Phys Rev A 32:1752–1758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aitchison Smith, D. (2018). Introduction. In: The Sliding-Filament Theory of Muscle Contraction. Springer, Cham. https://doi.org/10.1007/978-3-030-03526-6_1

Download citation

Publish with us

Policies and ethics