Skip to main content

Carbon Allotropes in the Environment and Their Toxicity

  • Chapter
  • First Online:

Abstract

As well as other contaminants (particular matter, heavy metal ions, toxic gases, etc.), carbon allotropes are severe contaminants in air, water, and soil. For example, for diesel vehicles, the black carbon (BC), organic carbon (OC), and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and other compounds, are typical contaminants under real-world driving conditions [1]. Among carbon allotropes in the environment, the most important carbons in the elemental form are black carbon (mainly), carbon nanotubes, graphene, and fullerenes in lesser quantities. Engineered carbon nanoparticles range from the well-established multi-ton production of carbon black (CB) and other carbon allotropes for applications in plastics and car tires to microgram quantities of fluorescent quantum dots used as markers in biological imaging. All of them possess distinct toxicity, depending on many factors (type of allotrope, particle size, form, structural defects, coating molecules, grade of functionalization, etc.). So, the nanotoxicology, as a scientific discipline, shall be quite different from occupational hygiene in approach and context. Understanding the toxicity of carbon nanomaterials and nano-enabled products is important for human and environmental health and safety as well as public acceptance.

Reproduced with permission of the American Chemical Society (Environ. Sci. Technol., 2014, 48 (5), 2792–2797).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In soil environments, nanomaterials come into contact with both organic matter and salts resulting in a substantially different microenvironment in comparison with test conditions observed in water or culture media.

  2. 2.

    See the difference between carbon black and black carbon below.

  3. 3.

    An excellent review dedicated to the carbon materials in the environment

  4. 4.

    Another term is frequently used, without “nano-” prefix: Graphene Family Materials (GFMs), Fig. 9.5

References

  1. M. Zavala, L.T. Molina, T.I. Yacovitch, et al., Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City. Atmos. Chem. Phys. 17, 15293–15305 (2017)

    Article  CAS  Google Scholar 

  2. C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)

    Article  CAS  Google Scholar 

  3. S.G. DuBay, C.C. Fuldner, Bird specimens track 135 years of atmospheric black carbon and environmental policy. PNAS 114(43), 11321–11326 (2017)

    Article  CAS  Google Scholar 

  4. B.M. Mohamed, N.K. Verma, A.M. Davies, A. McGowan, K. Crosbie Staunton, A. Prina-Mello, D. Kelleher, C.H. Botting, C.P. Causey, et al., Citrullination of proteins: A common post-translational modification pathway induced by different nanoparticlesin vitroandin vivo. Nanomedicine 7, 1181–1195 (2012). https://doi.org/10.2217/nnm.11.177

    Article  CAS  Google Scholar 

  5. A. Don Porto Carero, P.H. Hoet, L. Verschaeve, G. Schoeters, B. Nemery, Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol. Mutagen 37(2), 155–163 (2001)

    Article  CAS  Google Scholar 

  6. J. Lohwacharin, S. Takizawa, P. Punyapalakul, Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter. Environ. Pollut. 205, 131–138 (2015)

    Article  CAS  Google Scholar 

  7. M.W.I. Schmidt, Black carbon in soils and sediments. Analysis, distribution, implications, and current challenges. Glob. Biochem. Cycles 14(3), 777–793 (2000)

    Article  CAS  Google Scholar 

  8. S.J.K. Hussey, J. Purves, N. Allcock, V.E. Fernandes, P.S. Monks, J.M. Ketley, P.W. Andrew, J.A. Morrissey, Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ. Microbiol. 19(5), 1868–1880 (2017)

    Article  CAS  Google Scholar 

  9. N.D. Saenen, H. Bové, C. Steuwe, et al., Children’s urinary environmental carbon load. A novel marker reflecting residential ambient air pollution exposure? Am. J. Respir. Crit. Care Med. 196, 7 (2017). https://www.atsjournals.org/doi/pdf/10.1164/rccm.201704-0797OC

    Article  Google Scholar 

  10. J. Kolosnjaj-Tabi, F. Moussa, Anthropogenic carbon nanotubes and air pollution. Emission Control Sci. Technol. 3(3), 230–232 (2017)

    Article  CAS  Google Scholar 

  11. J. Du, S. Wang, H. You, X. Zhao, Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 36(2), 451–462 (2013)

    Article  CAS  Google Scholar 

  12. A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health Knowledge Base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)

    Article  CAS  Google Scholar 

  13. J. Kolosnjaj-Tabi, J. Just, K.B. Hartman, et al., Anthropogenic carbon nanotubes found in the airways of parisian children. EBioMedicine 2, 1697–1704 (2015)

    Article  Google Scholar 

  14. J. Kolosnjaj-Tabi, H. Szwarc, F. Moussa, Carbon nanotubes: Culprit or witness of air pollution? Nano Today 15, 11–14 (2017)

    Article  CAS  Google Scholar 

  15. R. Girardello, S. Tasselli, N. Baranzini, et al., Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS ONE 10(12), e0144361 (2015)

    Article  Google Scholar 

  16. Y. Yang, Y. Xiao, M. Li, et al., Evaluation of complex toxicity of carbon nanotubes and sodium pentachlorophenol based on earthworm coelomocytes test. PLoS One 12(1), e0170092 (2017)

    Article  Google Scholar 

  17. A.M. Jastrzębska, A.R. Olszyna, The ecotoxicity of graphene family materials: Current status, knowledge gaps and future needs. J. Nanopart. Res. 17, 40 (2015)

    Article  Google Scholar 

  18. M. Pelin, L. Fusco, V. León, et al., Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 7, 40572 (2017)

    Article  CAS  Google Scholar 

  19. A.B. Seabra, A.J. Paula, R. de Lima, et al., Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)

    Article  CAS  Google Scholar 

  20. Z. Singh, Applications and toxicity of graphene family nanomaterials and their composites. Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol. Sci. Appl. 9, 15–28 (2016). https://doi.org/10.2147/NSA.S101818

    Article  CAS  Google Scholar 

  21. A. Maria Jastrzębska, P. Kurtycz, A. Roman Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14, 1320 (2012)

    Article  Google Scholar 

  22. X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014)

    Article  CAS  Google Scholar 

  23. H. Chung, M.J. Kimb, K. Ko, et al., Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 514, 307–313 (2015)

    Article  CAS  Google Scholar 

  24. L. Ou, B. Song, et al., Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)

    Article  Google Scholar 

  25. J. Wang, T.B. Onasch, X. Ge, et al., Observation of fullerene soot in eastern China. Environ. Sci. Technol. Lett 3(4), 121–126 (2016)

    Article  CAS  Google Scholar 

  26. S.D. Snow, K. Chul Kim, K.J. Moor, et al., Functionalized fullerenes in water: A closer look. Environ. Sci. Technol. 49(4), 2147–2155 (2015)

    Article  CAS  Google Scholar 

  27. Z.-H. Tong, M.A. Bischo, L.F. Nies, et al., Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co- introduction effects. Sci. Rep 6, 28069 (2016)

    Article  CAS  Google Scholar 

  28. D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez, Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 40(14), 4360–4366 (2006)

    Article  CAS  Google Scholar 

  29. A. Johansen, A.L. Pedersen, K.A. Jensen, et al., Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Env. Toxicol. Chem. 27(9), 1895–1903 (2008)

    Article  CAS  Google Scholar 

  30. D.A. Navarro, R.S. Kookana, M.J. McLaughlin, J.K. Kirby, Fate of radiolabeled C60 fullerenes in aged soils. Environ. Pollut. 221, 293–300 (2017)

    Article  CAS  Google Scholar 

  31. R. Avanasi, W.A. Jackson, B. Sherwin, et al., C60 fullerene soil sorption, biodegradation, and plant uptake. Environ. Sci. Technol. 48(5), 2792–2797 (2014)

    Article  CAS  Google Scholar 

  32. X. Ma, C. Wang, Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Env. Eng. Sci. 27(10), 989–992 (2010)

    Article  CAS  Google Scholar 

  33. I. Joskoa, P. Oleszczuk, J. Pranagal, et al., Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol. Eng. 60, 50–59 (2013)

    Article  Google Scholar 

  34. J. Shan, R. Ji, Y. Yu, Z. Xie, X. Yan, Biochar, activated carbon, and carbon nanotubes have di erent e ects on fate of 14C-catechol and microbial community in soil. Sci. Rep. 5, 16000 (2015)

    Article  CAS  Google Scholar 

  35. E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, et al., Quantification of carbon nanotubes in 1 environmental matrices: Current capabilities, 2 case studies, and future prospects. Environ. Sci. Technol. 50(9), 4587–4605 (2016)

    Article  CAS  Google Scholar 

  36. T. Baquero, S. Shukrallah, R. Karolia, et al., Quantification of airborne road-side pollution carbon nanoparticles. J. Phys. Conf. Ser. 644, 012023 (2015)

    Article  Google Scholar 

  37. M. Sharma, Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J. Occup. Environ. Med. 14(1), 3–5 (2010)

    Article  Google Scholar 

  38. https://sciencing.com/effects-car-pollutants-environment-23581.html. Accessed 9 Mar 2018

  39. I.A. Resitoglu, K. Altinisik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy 17, 15–27 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Carbon Allotropes in the Environment and Their Toxicity. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_9

Download citation

Publish with us

Policies and ethics