Skip to main content

Abstract

In this section, we show several other carbon allotropes, from those rare as, for example, lonsdaleite to common glassy carbon and “carbon black,” xerogels, or hydrogels. In case of carbide- and MOF-derived carbons (relatively new research areas, especially the last one), the production methods vary and structures of formed carbons can be distinct (carbon nanotubes, fullerene- or onion-like nanostructures, nanocrystalline graphitic carbon, amorphous carbon, nanodiamonds, etc.); this is not a special structural type of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IUPAC: “Glass-like carbon cannot be described as amorphous carbon because it consists of two-dimensional structural elements and does not exhibit ‘dangling’ bonds” (IUPAC Goldbook, http://goldbook.iupac.org/html/G/G02639.html).

  2. 2.

    The main reason for the impressive chemical resistance is a consequence of the disordered structure and the inability to form intercalation compounds. This gives rise to high resistance to corrosion by acid and alkaline agents and melts.

  3. 3.

    Indeed, polymer-derived pyrolytic carbons are highly desirable building blocks for high-strength low-density ceramic meta-materials (J. Mater. Sci. 2017, 52, 13799–13811).

  4. 4.

    See also the section below about carbon allotropes in the environment.

  5. 5.

    This method is mentioned in a variety of reports on carbon aerogels. Other precursors of carbon aerogels are phenolic–furfural and melamine–formaldehyde aerogels, among others (Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, 2011, New York, NY.).

  6. 6.

    The image above is reproduced with permission of Wiley (Advanced Science, 2017, 4(7), 1700059).

  7. 7.

    For example, the hydrogen storage at ambient pressure for TiC-CDCs varied from 1.4 wt.% to 2.8 wt.%. The highest methane uptake was 46 cm3/g (3.1 wt.%) at 25 °C and atmospheric pressure (carbon, 44(12), 2489–2497 (2006)).

References

  1. M.P. Manoharan, H. Lee, R. Rajagopalan, H.C. Foley, M.A. Haque, Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14 (2009)

    Article  CAS  Google Scholar 

  2. K. Jurkiewicz, S. Duber, H.E. Fischerd, A. Burian, Modelling of glass-like carbon structure and its experimental verification by neutron and X-ray diffraction. J. Appl. Crystallogr. 50, 36–48 (2017)

    Article  CAS  Google Scholar 

  3. O.J.A. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997)

    Article  CAS  Google Scholar 

  4. J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016)

    Article  CAS  Google Scholar 

  5. C.M. Lentz, B.A. Samuel, H.C. Foley, M.A. Haque, Synthesis and characterization of glassy carbon nanowires. J. Nanomater 2011, (2011). Article ID 129298, 8 pp

    Google Scholar 

  6. A.F. Goncharov, Graphite at high pressures: Pseudomelting at 44 GPa. Sov. Phys. JETP 71(5), 1025–1027 (1990)

    Google Scholar 

  7. M. Yao, X. Fan, W. Zhang, et al., Uniaxial-stress-driven transformation in cold compressed glassy carbon. Appl. Phys. Lett. 111, 101901 (2017)

    Article  CAS  Google Scholar 

  8. M. Hu, J. He, Z. Zhao, et al., Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017)

    Article  CAS  Google Scholar 

  9. J. Csontos, Z. Toth, Z. Pápa, et al., Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses. Appl. Phys. A Mater. Sci. Process. 122, 593 (2016)

    Article  CAS  Google Scholar 

  10. M. Collaud Coen, Functionalization of graphite, glassy carbon, and polymer surfaces with highly oxidized sulfur species by plasma treatments. J. Appl. Phys. 92, 5077–5083 (2002)

    Article  CAS  Google Scholar 

  11. I. Emahi, M.P. Mitchell, D.A. Baum, Electrochemistry of pyrroloquinoline quinone (PQQ) on multi-walled carbon nanotube-modified glassy carbon electrodes in biological buffers. J. Electrochem. Soc. 164(3), H3097–H3102 (2017)

    Article  CAS  Google Scholar 

  12. F. Campanhã Vicentini, B.C. Janegitz, C.M.A. Brett, O. Fatibello-Filho, Tyrosinase biosensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sens. Actuators B Chem. 188, 1101–1108 (2013)

    Article  CAS  Google Scholar 

  13. F. Chekin, S. Bagheri, S. Bee Abd Hamid, Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Bull. Mater. Sci. 38(7), 1711–1716 (2015)

    Article  CAS  Google Scholar 

  14. S. Robin Nxele, P. Mashazi, T. Nyokong, Surface functionalization of glassy carbon electrodes via adsorption, electrografting and click chemistry using quantum dots and alkynyl substituted phthalocyanines: a brief review. Fourth Conference on Sensors, MEMS, and Electro-Optic Systems, 2017, Proceedings Volume 10036, 100360D

    Google Scholar 

  15. M.L. Valenzuela, R. Cisternas, P. Jara-Ulloa, L. Rodriguez, Electroanalytical analysis of glassy carbon electrode modified with COOH- and NO2- functionalized polyspyrophosphazenes. J. Chil. Chem. Soc. 62(2), 3515–3518 (2017)

    Article  CAS  Google Scholar 

  16. I. Kocak, Characterization of the reduction of oxygen at anthraquinone-modified glassy carbon and highly oriented pyrolytic graphite electrodes. Anal. Lett. 50(9), 1448–1462 (2017)

    Article  CAS  Google Scholar 

  17. J. Lv, Y. Tang, L. Teng, D. Tang, J. Zhang, Aminobenzene sulfonic acid-functionalized carbon nanotubes on glassy carbon electrodes for probing traces of mercury(II). J. Serb. Chem. Soc. 82(1), 73–82 (2017)

    Article  CAS  Google Scholar 

  18. P. Actis, G. Caulliez, G. Shul, et al., Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24(12), 6327–6333 (2008)

    Article  CAS  Google Scholar 

  19. J. Liu, S. Dong, Grafting of diaminoalkane on glassy carbon surface and its functionalization. Electrochem. Commun. 2(10), 707–712 (2000)

    Article  CAS  Google Scholar 

  20. M. Balooei, J. Bakhsh Raoof, F. Chekin, R. Ojani, Novel sensor based on 3-mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of Cefixime. Anal. Bioanal. Electrochem. 9(3), 266–276 (2017)

    CAS  Google Scholar 

  21. R. Sakthivel, S. Dhanalakshmi, S.-M. Chen, et al., A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 12, 9288–9300 (2017)

    Article  CAS  Google Scholar 

  22. J. Marwan, T. Addou, D. Bélanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17(9), 2395–2403 (2005)

    Article  CAS  Google Scholar 

  23. https://www.2spi.com/catalog/documents/glassy-vitreous-carbon-info.pdf. Accessed on 26 Oct 2017

  24. C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)

    CAS  Google Scholar 

  25. J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceramics 10(2), 87–95 (2016)

    Article  Google Scholar 

  26. Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)

    Article  CAS  Google Scholar 

  27. Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)

    Article  CAS  Google Scholar 

  28. S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)

    Article  Google Scholar 

  29. C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem 18(22), 3219–3229 (2017)

    Article  CAS  Google Scholar 

  30. A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: Study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)

    Article  CAS  Google Scholar 

  31. V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)

    Article  Google Scholar 

  32. C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)

    Article  Google Scholar 

  33. N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)

    Article  CAS  Google Scholar 

  34. J. Myalski, B. Hekner, A. Posmyk, The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, (2015) pp. 000121–000124

    Article  Google Scholar 

  35. Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32, 042001 (2014)

    Article  CAS  Google Scholar 

  36. M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)

    Article  CAS  Google Scholar 

  37. https://www.alfa.com/es/glassy-carbon/ Accessed on 27 Oct 2017

  38. S. Dadkhah, E. Ziaei, A. Mehdinia, T. Baradaran Kayyal, A. Jabbari, A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol a. Microchim. Acta 183(6), 1933–1941 (2016)

    Article  CAS  Google Scholar 

  39. J. Bakhsh Raoof, R. Ojani, M. Baghayeri, M. Amiri-Aref, Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine. Anal. Methods 4, 1579–1587 (2012)

    Article  CAS  Google Scholar 

  40. www.orioncarbons.com. Accessed on 31 Oct 2017

  41. C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)

    Article  CAS  Google Scholar 

  42. https://en.wikipedia.org/wiki/Carbon_black. Accessed on 31 Oct 2017

  43. http://www.climatecentral.org/news/black-carbon-second-only-to-co2-in-heating-the-planet-new-study-15465. Accessed on 31 Oct 2017

  44. https://birlacarbon.com/learning-center/carbon-black/ Accessed on 31 Oct 2017

  45. N. Probst, E. Grivei, Structure and electrical properties of carbon black. Carbon 40, 201–205 (2002)

    Article  CAS  Google Scholar 

  46. M. Ozawa, E. Ōsawa, Carbon blacks as the source materials for carbon nanotechnology. In: “Carbon Nanotechnology”, 2006, L. Dai. (Ed.), Chapt. 6, p. 127-151. Elsevier: Dordrecht

    Chapter  Google Scholar 

  47. http://www.carbonblack.jp/en/cb/tokusei.html. Accessed on 31 Oct 2017

  48. S. Lim, X. Faïn, P. Gino, et al., Black carbon variability since preindustrial times in the Eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, icecores. Atmos. Chem. Phys. 17, 3489–3505 (2017)

    Article  CAS  Google Scholar 

  49. C. Garland, S. Delapena, R. Prasad, C. L’Orange, D. Alexander, M. Johnson, Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations. Atmos. Environ. 169, 140–149 (2017)

    Article  CAS  Google Scholar 

  50. A. Guha, B. De Kumar, P. Dha, et al., Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol Air Qual. Res. 15, 786–798 (2015)

    Article  CAS  Google Scholar 

  51. W. Min Hao, A. Petkov, B.L. Nordgre, et al., Daily black carbón emissions from fires in northern Eurasia for 2002–2015. Geosci. Model Dev. 9, 4461–4474 (2016)

    Article  CAS  Google Scholar 

  52. Ö. Gustafssona, V. Ramanathan, Convergence on climate warming by black carbon aerosols. PNAS 113(16), 4243–4245 (2016)

    Article  CAS  Google Scholar 

  53. V. Ramanathan, G. Carmichael, Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)

    Article  CAS  Google Scholar 

  54. O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Volume 2011. Article ID 521985, 8 pp (2011)

    Google Scholar 

  55. http://www.asahicarbon.co.jp/global_site/product/cb/characteristic.html. Accessed on 31 Oct 2017

  56. G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)

    Article  CAS  Google Scholar 

  57. Q. Zhang, B.-Y. Zhang, Z.-X. Guo, J. Yu, Tunable electrical conductivity of carbon-black-filled ternary polymer blends by constructing a hierarchical structure. Polymers 9, 404, 11 pp (2017)

    Article  CAS  Google Scholar 

  58. S.K.H. Gulrez, S. Al-Assaf, G.O. Phillips. Hydrogels: methods of preparation, characterisation and applications. in Progress in Molecular and Environmental Bioengineering. From Analysis and Modeling to Technology Applications. ed. by A. Carpi, ISBN: 978-953-307-268-5 (InTech, London, UK, 2011)

    Google Scholar 

  59. L. Zuo, Y. Zhang, L. Zhang, Y.-E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials 8, 6806–6848 (2015)

    Article  CAS  Google Scholar 

  60. J. Shen, D.Y. Guan, Preparation and application of carbon aerogels, in Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies, ed. by M. Aegerter, N. Leventis, M. Koebel, (Springer, New York, 2011)

    Google Scholar 

  61. X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for Lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017)

    Article  CAS  Google Scholar 

  62. K.-S. Lin, Y.-J. Mai, S.-W. Chiu, J.-H. Yang, S.L I. Chan. Synthesis and rage. J. Nanomater. 2012, Article ID 201584, 9 pp (2012)

    Google Scholar 

  63. K. Kreek, K. Kriis, B. Maaten, et al., Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts. J. Non-Cryst. Solids 404, 43–48 (2014)

    Article  CAS  Google Scholar 

  64. C. Macias, G. Rasines, T.E. García, et al., Synthesis of porous and mechanically compliant carbon aerogels using conductive and structural additives. Gels 2, 4 (2016)

    Article  CAS  Google Scholar 

  65. B. Xue, M. Qin, J. Wu, et al., Electroresponsive supramolecular graphene oxide hydrogels for active Bacteria adsorption and removal. ACS Appl. Mater. Interfaces 8(24), 15120–15127 (2016)

    Article  CAS  Google Scholar 

  66. C. Shen, E. Barrios, M. McInnis, J. Zuyus, L. Zhai, Fabrication of graphene aerogels with heavily loaded metallic nanoparticles. Micromachines 8, 47 (2017)

    Article  Google Scholar 

  67. Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui, A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 10(4), 1213–1222 (2017)

    Article  CAS  Google Scholar 

  68. H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng, X. Ya, Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res. Lett. 10, 272 (2015)

    Article  CAS  Google Scholar 

  69. Y. Hu, X. Tong, H. Zhuo, et al., 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6, 15788–15795 (2016)

    Article  CAS  Google Scholar 

  70. M. Yu, Y. Han, J. Li, L. Wang, One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel oxide composites for energy storage. Chem. Eng. J. 324, 287–295 (2017)

    Article  CAS  Google Scholar 

  71. J. Štefelová, M. Mucha, T. Zelenka, Cellulose acetate-based carbon xerogels and cryogels. WIT Transactions on Engineering Sciences 77., WIT Press, 65–75 (2013)

    Article  CAS  Google Scholar 

  72. P. Hao, Z. Zhao, J. Tian, et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014)

    Article  CAS  Google Scholar 

  73. A. Feaver, S. Sepehri, P. Shamberger, A. Stowe, T. Autrey, G. Cao, Coherent carbon Cryogel-ammonia borane nanocomposites for H2 storage. J. Phys. Chem. B 111, 7469–7472 (2007)

    Article  CAS  Google Scholar 

  74. C. Alegre, D. Sebastián, E. Baquedano, et al., Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR). Catalysts 2, 466–489 (2012)

    Article  CAS  Google Scholar 

  75. N. Mahata, A.R. Silva, M.F.R. Pereira, C. Freire, B. de Castro, J.L. Figueiredo, Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels. J. Colloid Interface Sci. 311, 152–158 (2007)

    Article  CAS  Google Scholar 

  76. W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol–gel process in a water–methanol–inorganic salt solution. J. Sol-Gel Sci. Technol. 58, 102–113 (2011)

    Article  CAS  Google Scholar 

  77. W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep. 3, 1935, 7 pp (2013)

    Article  Google Scholar 

  78. E. Kowsari, High-performance supercapacitors based on ionic liquids and a graphene nanostructure, in Ionic Liquids – Current State of the Art, (Intech, London, UK, 2015), pp. 505–542

    Google Scholar 

  79. G. Yushin, A. Nikitin, Y. Gogotsi, Carbide-derived carbon, in Nanomaterials Handbook, (Taylor & Francis Group, Boca Raton, 2006)

    Google Scholar 

  80. V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons – From porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011)

    Article  CAS  Google Scholar 

  81. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    Article  CAS  Google Scholar 

  82. V. Presser, L. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible Nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv. Energy Mater. 1(3), 423–430 (2011)

    Article  CAS  Google Scholar 

  83. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes of Less Than 1 Nanometer. Science 313(5794), 1760–1763 (2006)

    Article  CAS  Google Scholar 

  84. S.H. Yeon, P. Reddington, Y. Gogotsi, J.E. Fischer, C. Vakifahmetoglu, P. Colombo, Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon 48, 201–210 (2010)

    Article  CAS  Google Scholar 

  85. Y. Gogotsi, Not just graphene – The wonderful world of carbon and related nanomaterials. MRS Bull. 40, 1110–1120 (2015)

    Article  CAS  Google Scholar 

  86. M. Rose, Y. Korenblit, E. Kockrick, L. Borchard, M. Oschatz, S. Kaskel, G. Yushin, Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7(8), 1108–1117 (2011)

    Article  CAS  Google Scholar 

  87. R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J.E. Fischer, S. Kucheyev, Titanium carbide derived Nanoporous carbon for energy-related applications. Carbon 44(12), 2489–2497 (2006)

    Article  CAS  Google Scholar 

  88. M. Sevilla, R. Mokaya, Activation of carbide derived carbons: A route to materials with enhanced gas and energy storage properties. J. Mater. Chem. 21, 4727–4732 (2011)

    Article  CAS  Google Scholar 

  89. E.N. Hoffman, G. Yushin, B.G. Wendler, M.W. Barsouma, Y. Gogotsi, Carbide-derived carbon membrane. Mater. Chem. Phys. 112(2), 587–591 (2008)

    Article  CAS  Google Scholar 

  90. C. Portet, D. Kazachkin, S. Osswald, Y. Gogotsi, E. Borguet, Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochim. Acta 497, 137–142 (2010)

    Article  CAS  Google Scholar 

  91. B. Krüner, C. Odenwald, A. Tolosa, A. Schreiber, M. Aslan, G. Kickelbick, V. Presser, Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustainable Energy Fuels 1, 1588–1600 (2017)

    Article  Google Scholar 

  92. S. Ishikawa, T. Saito, K. Kuwahara, Carbon Materials with Nano-sized Pores Derived from Carbides. Sei Technical Review 82, 152–157 (2016)

    Google Scholar 

  93. M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova, M.W. Barsoum, Y. Gogotsi, Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. 126, 4977–4980 (2014)

    Article  Google Scholar 

  94. H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim. Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18–21, 2006, Zhuhai, China. pp.484–487 (2006)

    Google Scholar 

  95. A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)

    Article  CAS  Google Scholar 

  96. S.K. Mandal, S. Hussain, A.K. Pal, Growth mechanism of carbon nanotubes deposited by electrochemical technique. Ind. J. Pure Appl. Phys. 43, 765–771 (2005)

    CAS  Google Scholar 

  97. K. Yamagiwa, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes. Jap. J. Appl. Phys. 56, 06GE05 (2017)

    Article  Google Scholar 

  98. L. Zhang, X. Qina, G. Shaoa, Z. Ma, S. Liu, C. He, A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater. Lett. 122, 78–81 (2014)

    Article  CAS  Google Scholar 

  99. A.H. Farmahini, D.S. Sholl, S.K. Bhatia, Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic. J. Am. Chem. Soc. 137(18), 5969–5979 (2015)

    Article  CAS  Google Scholar 

  100. B. Li, H.-M. Wen, W. Zhou, J.Q. Xu, B. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 1, 557–580 (2016)

    Article  CAS  Google Scholar 

  101. S.K. Bhatia, T.X. Nguyen, Potential of silicon carbide-derived carbon for carbon capture. Ind. Eng. Chem. Res. 50, 10380–10383 (2011)

    Article  CAS  Google Scholar 

  102. Z. Zondaka, R. Valner, A. Aabloo, T. Tamm, R. Kiefer, Embedded carbide-derived carbon particles in polypyrrole for linear actuator. Proc. SPIE 9798, 97981H-7 (2016)

    Google Scholar 

  103. W. Xing, C. Liu, Z. Zhou, J. Zhou, G. Wang, S. Zhuo, et al., Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res. Lett. 9, 189 (2014)

    Article  CAS  Google Scholar 

  104. L. Borchardt, F. Hasche, M.R. Lohe, et al., Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon 50, 1861–1870 (2012)

    Article  CAS  Google Scholar 

  105. J. Gläsel, J. Diao, Z. Feng, M. Hilgart, T. Wolker, D. Sheng Su, B.J.M. Etzold, Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction. Chem. Mater. 27, 5719–5725 (2015)

    Article  CAS  Google Scholar 

  106. J. Tae Lee, H. Kim, M. Oschatz, D.-C. Lee, F. Wu, H.-T. Lin, et al., Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium selenium batteries. Adv. Energy Mater. 5, 1400981 (2014)

    Article  CAS  Google Scholar 

  107. W. Nickel, M. Oschatz, M. von der Lehr, M. Leistner, et al., Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hardtemplating. J. Mater. Chem. A 2, 12703 (2014)

    Article  CAS  Google Scholar 

  108. P.-C. Gao, W.-Y. Tsai, B. Daffos, P.-L. Taberna, C.R. Pérez, Y. Gogotsi, P. Simon, F.G. Favier, Carbide derived carbon for high-power supercapacitors. Nano Energy 12, 197–206 (2015)

    Article  CAS  Google Scholar 

  109. H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)

    Article  CAS  Google Scholar 

  110. K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016)

    Article  CAS  Google Scholar 

  111. Q. Ren, H. Wang, X.-F. Lu, Y.-X. Tong, G.-R. Li, Recent Progress on MOF-derived heteroatom-doped carbon-based Electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018)

    Article  CAS  Google Scholar 

  112. L. Lux, K. Williams, S. Ma, Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10–22 (2015)

    Article  CAS  Google Scholar 

  113. A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012)

    Article  CAS  Google Scholar 

  114. P. Silva, S.M.F. Vilela, J.P.C. Tome, F.A. Almeida Paz, Multifunctional metal–organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 44, 6774–6803 (2015)

    Article  CAS  Google Scholar 

  115. B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48, 456–463 (2010)

    Article  CAS  Google Scholar 

  116. M. Yang, X. Hu, Z. Fang, et al., Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn–air and li–S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 27(36), 1701971 (2017)

    Article  CAS  Google Scholar 

  117. X. Li, J. Zhang, Y. Han, M. Zhu, S. Shang, W. Li, MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination. J. Mater. Sci. 7 (2018). https://doi.org/10.1007/s10853-017-1951-3

    Article  CAS  Google Scholar 

  118. B. Chen, G. Ma, D. Kong, Y. Zhu, Y. Xia, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon 95, 113–124 (2015)

    Article  CAS  Google Scholar 

  119. W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced Electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)

    Article  CAS  Google Scholar 

  120. H.-L. Jiang, B. Liu, Y.-Q. Lan, et al., From metal-organic framework to Nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011)

    Article  CAS  Google Scholar 

  121. B. Ding, J. Wang, Z. Chang, G. Xu, et al., Self-sacrificial template-directed synthesis of metal–organic framework-derived porous carbon for energy-storage devices. Chem. Electro. Chem. 3(4), 668–674 (2016)

    CAS  Google Scholar 

  122. R. Chen, T. Zhao, T. Tian, et al., Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Materials 2, 124109 (2014)

    Article  CAS  Google Scholar 

  123. H. Bin Wu, S. Wei, L. Zhang et al. Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry, a Eur. J., 2013, 9(33), 10804–10808

    Article  CAS  Google Scholar 

  124. A. Banerjee, K.K. Upadhyay, et al., MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density li-ion hybrid electrochemical capacitors (li-HECs). Nanoscale 6(8), 4387–4394 (2014)

    Article  CAS  Google Scholar 

  125. T. Segakwenga, N.M. Musyoka, J. Ren, et al., Comparison of MOF-5 and MIL-101 derived carbons for hydrogen storage application. Res. Chem. Intermed. 42, 4951 (2015). https://doi.org/10.1007/s11164-015-2338-1

    Article  CAS  Google Scholar 

  126. A. Li, Y. Tong, B. Cao, H. Song, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Rep. 7, Article number: 40574 (2017)

    Google Scholar 

  127. H. Li, L. Chi, C. Yang, L. Zhang, et al., MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31(19), 3069–3077 (2016)

    Article  CAS  Google Scholar 

  128. S. Hoon Ahn, A. Manthiram, Self-templated synthesis of co- and N-doped carbon microtubes composed of hollow Nanospheres and nanotubes for efficient oxygen reduction reaction. Small 13(11), 1603437 (2017)

    Article  CAS  Google Scholar 

  129. Y.-X. Zhou, Y.-Z. Chen, L. Cao, et al., Conversion of a metal–organic framework to N-doped porous carbon incorporating co and CoO nanoparticles: Direct oxidation of alcohols to esters. Chem. Commun. 51, 8292–8295 (2015)

    Article  CAS  Google Scholar 

  130. K.-Y.A. Lin, H.-A. Chang, B.-J. Chen, Multi-functional MOF-derived magnetic carbon sponge. J. Mater. Chem. A 4, 13611–13625 (2016)

    Article  CAS  Google Scholar 

  131. N.L. Torad, M. Hu, S. Ishihara, et al., Direct synthesis of MOF-derived nanoporous carbon with magnetic co nanoparticles toward efficient water treatment. Small 10(10), 2096–2107 (2014)

    Article  CAS  Google Scholar 

  132. X. Liu, X. Quan, Fe-MOF derived ferrous hierarchically porous carbon used as EF cathode for PFOA degradation. Journal of Geoscience and Environment Protection 5(6), 9–14 (2017)

    Article  Google Scholar 

  133. E.C. Walter, T. Beetz, M.Y. Sfeir, L.E. Brus, M.L. Steigerwald, Crystalline graphite from an organometallic solution-phase reaction. J. Am. Chem. Soc. 128(49), 15590–15591 (2006)

    Article  CAS  Google Scholar 

  134. W. Sisi, Z. Yinggang, H. Yifeng, et al., Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60(7), 654–663 (2017)

    Article  CAS  Google Scholar 

  135. D.Z. Chen, C.Q. Chen, W.S. Shen, et al., MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28(7), 1769–1779 (2017)

    Article  CAS  Google Scholar 

  136. S. Hoon Ahn, M.J. Klein, A. Manthiram, 1D co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 7(7), 1601979 (2017)

    Article  CAS  Google Scholar 

  137. Q. Gan, K. Zhao, S. Liu, Z. He, MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 52(13), 7768–7780 (2017)

    Article  CAS  Google Scholar 

  138. Z. Li, L. Yin, MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for li–se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7, 9597–9606 (2015)

    Article  CAS  Google Scholar 

  139. W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013)

    Article  CAS  Google Scholar 

  140. M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2(3), 218–245 (2017)

    Article  Google Scholar 

  141. S. Fardindoost, S. Hatamie, A. Iraji Zad, F. Razi Astaraei, Hydrogen sensing properties of nanocomposite graphene oxide/co-based metal organic frameworks (co-MOFs@GO). Nanotechnology 29, 015501 (2018). (7 pp)

    Article  CAS  Google Scholar 

  142. G. Cai, W. Zhang, L. Jiao, S.-H. Yu, H.-L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2(6), 791–802 (2017)

    Article  CAS  Google Scholar 

  143. T. Nagy, L. Yunq, I. Shinsuke, et al., MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem. Lett. 43(5), 717–719 (2014)

    Article  CAS  Google Scholar 

  144. L. Xiao, R. Xu, Q. Yuan, F. Wang, Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167, 39–43 (2017)

    Article  CAS  Google Scholar 

  145. W. Li, S. Hu, X. Luo, et al., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29(16), 1605820 (2017)

    Article  CAS  Google Scholar 

  146. S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50, 3363–3366 (2014)

    Article  CAS  Google Scholar 

  147. Shock compression research shows hexagonal diamond could serve as meteor impact marker. https://www.llnl.gov/news/shock-compression-research-shows-hexagonal-diamond-could-serve-meteor-impact-marker. Accessed on 2 Nov 2017

  148. A.G. Kvashnin, P.B. Sorokin, Lonsdaleite films with nanometer thickness. J. Phys. Chem. Lett. 5, 541–548 (2014)

    Article  CAS  Google Scholar 

  149. http://aflowlib.duke.edu/users/egossett/lattice/struk.picts/hexdia.s.png. Accessed on 2 Nov2017

  150. Structure of the Diamond-lonsdaleite System. http://www.imaging-git.com/science/electron-and-ion-microscopy/structure-diamond-lonsdaleite-system. Accessed on 2 Nov 2017

  151. P. Nemeth, L.A.J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 5447, 5 pp (2014)

    Article  CAS  Google Scholar 

  152. L. Qingkun, S. Yi, L. Zhiyuan, Z. Yu, Lonsdaleite – A material stronger and stiffer than diamond. Scr. Mater. 65, 229–232 (2011)

    Article  CAS  Google Scholar 

  153. D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970, 6 pp (2016)

    Article  CAS  Google Scholar 

  154. B. Kulnitskiy, I. Perezhogin, G. Dubitskya, V. Blank, Polytypes and twins in the diamond–lonsdaleite system formed by high-pressure and high-temperature treatment of graphite. Acta Cryst B69, 474–479 (2013)

    Google Scholar 

  155. Y. Nakamuta, S. Toh, Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM. Am. Mineral. 98(4), 574–581 (2015)

    Article  CAS  Google Scholar 

  156. S.V. Goryainov, A.Y. Likhacheva, S.V. Rashchenko, A.S. Shubin, V.P. Afanas’eva, N.P. Pokhilenko, Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45, 305–313 (2014)

    Article  CAS  Google Scholar 

  157. B. Qu, B. Zhang, L. Wang, R. Zhou, X. Cheng Zeng, L. Li, Persistent luminescence hole-type materials by design: Transition-metal-doped carbon allotrope and carbides. ACS Appl. Mater. Interfaces 8(8), 5439–5444 (2016)

    Article  CAS  Google Scholar 

  158. A. Milani, M. Tommasini, V. Russo, et al., Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein J. Nanotechnol. 6, 480–491 (2015)

    Article  CAS  Google Scholar 

  159. V.V. Sobolev, V.Y. Slobodskoy, S.N. Selyukov, A.A. Udoyev, Some conversions of chaoite to other carbon phases. Int. Geol. Rev. 28(6), 680–683 (1986)

    Article  Google Scholar 

  160. J. Pola, A. Ouchi, S. Bakardjieva, et al., Laser photochemical etching of silica: Nanodomains of crystalline chaoite and silica in amorphous C/Si/O/N phase. J. Phys. Chem. C 112(34), 13281–13286 (2008)

    Article  CAS  Google Scholar 

  161. A. Tembre, J. Henocque, M. Clin. Infrared and Raman spectroscopic study of carbon-cobalt composites. Int. J. Spectrosc. 2011, Article ID 186471, 6 pp (2011)

    Google Scholar 

  162. S.K. Simakov, A.E. Kalmykov, L.M. Sorokin, et al., Chaoite formation from carbon-bearing fluid at low PT parameters. Dokl. Earth Sci. 399A(9), 1289–1290 (2004)

    CAS  Google Scholar 

  163. S. Li, Z. Huang, et al., Ferromagnetic chaoite macrotubes prepared at low temperature and pressure. Appl. Phys. Lett. 90, 232507 (2007)

    Article  CAS  Google Scholar 

  164. S. Li, G. Ji, Z. Huang, F. Zhang, Y. Du, Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon 45, 2946–2950 (2007)

    Article  CAS  Google Scholar 

  165. Q. Peng, A.K. Dearden, J. Crean, et al., New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)

    Article  CAS  Google Scholar 

  166. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Article  CAS  Google Scholar 

  167. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of Graphene’s properties by reversible hydrogenation: Evidence for Graphane. Science 323(5914), 610–613 (2009)

    Article  CAS  Google Scholar 

  168. H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters. GraphAne: From synthesis to applications. arXiv:1502.05804 [cond-mat.mtrl-sci], (2015)

    Google Scholar 

  169. H. Zhang, Y. Miyamoto, A. Rubio. Laser-induced preferential dehydrogenation of graphane. Phys. Rev. B. 85, 201409(R) (2012)

    Google Scholar 

  170. C. Zhou, S. Chen, J. Lou, J. Wang, et al., Graphene’s cousin: The present and future of graphene. Nanoscale Res. Lett. 9, 26 (2014)

    Article  CAS  Google Scholar 

  171. H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters, Graphane. WIREs Comput. Mol. Sci. 5, 255–272 (2015)

    Article  CAS  Google Scholar 

  172. A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das. Third conformer of graphane: A first-principles density functional theory study. Phys. Rev. B. 83, Article ID 033404 (2011)

    Google Scholar 

  173. H. Einollahzadeh, S. Mahdi Fazeli, R. Sabet Dariani, Studying the electronic and phononic structure of penta-graphane. Sci. Technol. Adv. Mater. 17(1), 610–617 (2016)

    Article  CAS  Google Scholar 

  174. D. Haberer, C.E. Guusca, Y. Wang, et al., Evidence for a new two-dimensional C4H-type polymer based on hydrogenated graphene. Adv. Mater. 23, 4497–4503 (2011)

    Article  CAS  Google Scholar 

  175. V.E. Antonov, I.O. Bashkin, A.V. Bazhenov, et al., Multilayer graphane synthesized under high hydrogen pressure. Carbon 100, 465–473 (2016)

    Article  CAS  Google Scholar 

  176. H. Peelaers, A.D. Hernández-Nieves, O. Leenaerts, B. Partoens, F.M. Peeters, Vibrational properties of graphene fluoride and graphene. Appl. Phys. Lett. 98, 051914 (2011)

    Article  CAS  Google Scholar 

  177. M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)

    Article  CAS  Google Scholar 

  178. B.-R. Wu, C.-K. Yang, Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)

    Article  CAS  Google Scholar 

  179. M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, Graphene to graphane: A theoretical study. Nanotechnology 20, 465704, 6 pp (2009)

    Article  CAS  Google Scholar 

  180. W. Liu, F.-H. Meng, J.-H. Zhao, X.-H. Jiang, A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons. J. Theor. Comput. Chem. 16(4), 1750032, 12 pp (2017)

    Article  CAS  Google Scholar 

  181. J.-H. Lee, J.C. Grossman, Magnetic properties in graphene-graphane superlattices. Appl. Phys. Lett. 97, 133102 (2010)

    Article  CAS  Google Scholar 

  182. A.S. Barnarda, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20, 10459–10464 (2010)

    Article  CAS  Google Scholar 

  183. T. Hussain, P. Panigrahi, R. Ahuja, Sensing propensity of a defected graphane sheet towards CO, H2O and NO2. Nanotechnology 25(32), 325501 (2014)

    Article  CAS  Google Scholar 

  184. J. Xiao, S. Sitamraju, M.J. Janik, CO2 adsorption thermodynamics over N-substituted/grafted Graphanes: A DFT study. Langmuir 30(7), 1837–1844 (2014)

    Article  CAS  Google Scholar 

  185. T. Hussain, P. Panigrahi, R. Ahuja, Enriching physisorption of H2S and NH3 gases on a graphane sheet by doping with li adatoms. Phys. Chem. Chem. Phys. 16(17), 8100–8105 (2014)

    Article  CAS  Google Scholar 

  186. E. Ventura-Macias, J. Guerrero-Sánchez, N. Takeuchi, Formaldehyde adsorption on graphane. Computational and Theoretical Chemistry 1117, 119–123 (2017)

    Article  CAS  Google Scholar 

  187. T. Hussain, B. Pathak, M. Ramzan, T.A. Maark, R. Ahuja, Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 100, 183902 (2012)

    Article  CAS  Google Scholar 

  188. S.C. Ray, N. Soin, T. Makgato, et al., Graphene supported Graphone/Graphane bilayer nanostructure material for Spintronics. Sci. Reports 4, 3862 (2014)

    Article  CAS  Google Scholar 

  189. W. Zhao, J. Gebhardt, F. Spath, et al., Reversible hydrogenation of graphene on Ni(111)—Synthesis of “Graphone”. Chem. Eur. J. 21, 3347–3358 (2015)

    Article  CAS  Google Scholar 

  190. L. Feng, W.X. Zhang, The structure and magnetism of graphone. AIP Adv. 2, 042138 (2012)

    Article  CAS  Google Scholar 

  191. Q. Peng, A.K. Dearden, X.-J. Chen, et al., Peculiar pressure effect on Poisson ratio of graphone as a strain damper. Nanoscale 7, 9975–9979 (2015)

    Article  CAS  Google Scholar 

  192. M. Neek-Amal, J. Beheshtian, F. Shayeganfar, S.K. Singh, J.H. Los, F.M. Peeters, Spiral graphone and one-sided fluorographene nanoribbons. Phys. Rev. B 87, 075448 (2013)

    Article  CAS  Google Scholar 

  193. A.I. Podlivaev, L.A. Openov, On the thermal stability of Graphone. Semiconductors 45(7), 958–961 (2011)

    Article  CAS  Google Scholar 

  194. D.W. Boukhvalov, Stable antiferromagneticgraphone. Physica E43, 199–201 (2010)

    Article  CAS  Google Scholar 

  195. Q. Li, Y. Ma, A.R. Oganov, et al., Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009)

    Article  CAS  Google Scholar 

  196. M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, Monoclinic C2/m-20 carbon: a novel superhard sp3 carbon allotrope. RSC Adv. 6, 32740–32745 (2016)

    Article  CAS  Google Scholar 

  197. M. Amsler, J.A. Flores-Livas, M.A.L. Marques, S. Botti, S. Goedecker, Prediction of a novel monoclinic carbon allotrope. The European Physical Journal B 86, 383 (2013)

    Article  CAS  Google Scholar 

  198. J. Narayan, A. Bhaumik, Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015)

    Article  CAS  Google Scholar 

  199. J. Narayan, A. Bhaumik, Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 4(2), 118–126 (2016)

    Article  CAS  Google Scholar 

  200. J. Pandey, R. Khare, S. Khare, Q-carbon: A new, inexpensive and affordable diamond in Everyones hand. International Journal for Research in Applied Science & Engineering 5(V), 89–91 (2017)

    Google Scholar 

  201. https://www.nextbigfuture.com/2011/04/t-carbon-novel-carbon-allotrope.html. Accessed on 26 Nov 2017

  202. X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G.S. T-Carbon, A novel carbon allotrope. Phys. Rev. Lett. 106, 155703 (2011)

    Article  CAS  Google Scholar 

  203. J. Zhang, R. Wang, X. Zhu, et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 8, Article number 683 (2017)

    Google Scholar 

  204. D. Li, F. Tian, D. Duan, Z. Zhao, et al., Modulated T carbon-like carbon allotropes: An ab initio study. RSC Adv. 4, 17364–17369 (2014)

    Article  CAS  Google Scholar 

  205. J.Q. Wang, C.X. Zhao, C.Y. Niu, Q. Sun, Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys. Condens. Matter 28(47), 475402 (2016)

    Article  CAS  Google Scholar 

  206. Aegerter, Michel A., Leventis, Nicholas, Koebel, Matthias M. (Eds.), Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. (Springer, New York, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Other Existing Carbon Forms. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_5

Download citation

Publish with us

Policies and ethics