Skip to main content

Abstract

When the area of nanotechnology began to develop intensively as an independent field in the frontiers of physics, chemistry, materials chemistry and physics, medicine, biology, and other disciplines two decades ago, terms such as “nanoparticle,” “nanopowder,” “nanotube,” and “nanoplate,” and other terms related to shape rapidly became very common. At the same time, during the last years, efforts of researchers have led to reports of a large number of the nanostructure types mentioned earlier and the discovery of rarer species, such as “nanodumbbells,” “nanoflowers,” “nanorices,” “nanolines,” “nanotowers,” “nanoshuttles,” “nanobowlings,” “nanowheels,” “nanofans,” “nanopencils,” “nanotrees,” “nanoarrows,” “nanonails,” “nanobottles,” and “nanovolcanoes,” among many others.

Reproduced with permission of the Elsevier Science (Inorganica Chimica Acta, 2017, 468, 67–76).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reproduced with permission of Nature (Nature Chemistry, 2012, 4, 195–200).

  2. 2.

    Reproduced with permission of the Royal Society of Chemistry (J. Mater. Chem., 2012, 22, 24230–24253).

  3. 3.

    Reproduced with permission of the American Chemical Society (J. Phys. Chem. C, 2010, 114, 12062–12068).

  4. 4.

    Reproduced with permission of Nature (upper image: Nature Mater., 2016, 15, 634–640).

  5. 5.

    Reproduced with permission of the American Chemical Society (image below: ACS Nano, 2013, 7(11), 10075–10082).

  6. 6.

    The name carbyne has been adopted to indicate an infinite sp-carbon wire as a model system; meanwhile carbynoid structures have been used to indicate finite systems or moieties comprising sp-carbon in amorphous systems.

  7. 7.

    Reproduced with permission of Wiley (Phys. Status Solidi, 2010, 247(8), 2017–2021).

  8. 8.

    The nanopencil image above in the subtitle is reproduced with permission of the John Wiley and Sons (Adv. Funct. Mater., 2006, 16, 410–416).

  9. 9.

    Other combinations between carbon allotropes are known, for instance, carbon nanodots immobilized on single-walled carbon nanotubes (Chem. Sci., 2015, 6, 6878–6885).

  10. 10.

    The nanopeapod image above in the subtitle is reproduced with permission of the Elsevier Science (Carbon, 2015, 95, 302–308.).

  11. 11.

    See sections above on carbynes and carbon-atom wires, which are also carbon chains of lesser size.

  12. 12.

    The nanobar image above in the subtitle is reproduced with permission of the American Chemical Society (Nano Lett., 2007, 7(4), 1032–1036).

  13. 13.

    The nanobrick image above in the subtitle is reproduced with permission of the American Chemical Society (Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009, POLY-333.). Nanobricks are closely related to nanoblocks (Chinese Journal of Catalysis, 2016, 37(8), 1275–1282).

  14. 14.

    The images of nanobelts are reproduced with permission of the Elsevier Science (Carbon, 2008, 46, 741–746).

  15. 15.

    The nanobottle image above in the subtitle is reproduced with permission of the American Chemical Society (J. Am. Chem. Soc., 2006, 128, 2520–2521).

  16. 16.

    Sometimes referred as nanohorns.

  17. 17.

    The nanocone images above in the subtitle are reproduced with permission of the Elsevier Science (Vacuum, 2016, 134, 40–47.) (right) and from the Web site https://www.forskningsradet.no (left).

  18. 18.

    The nanospike image above in the subtitle is reproduced with permission of the Wiley (ChemistrySelect, 2016, 1, 6055–6061).

  19. 19.

    The nanoring image is reproduced with permission of the Elsevier Science (left: Computational Materials Science, 2008, 43, 943–950; right: Chemical Physics Letters, 2007, 433, 327–330).

  20. 20.

    The nanotorus image is reproduced with permission of the American Chemical Society (left: J. Phys. Chem. C, 2009, 113, 19123–19133) and APS Physics (right: Phys. Rev. B, 2015, 91, 165433.).

  21. 21.

    Image above is reproduced with permission of the American Chemical Society (ACS Nano, 2010, 4(8), 4396–4402).

  22. 22.

    More detailed information on the carbide-derived carbons see in the chapter below.

  23. 23.

    The VFD is a microfluidic device that has been used for disassembling self-organized systems, exfoliation of graphite and hexagonal boron nitride, wrapping multilayer graphene sheets around algal cells, and controlling the particle size and distribution of decorated metal nanoparticles on various carbon nanomaterials.

  24. 24.

    The nanocage image is reproduced with permission of Nature (Sci. Rep., 2014, 4, 4437).

  25. 25.

    Nanocubes will be discussed in the section below, dedicated to polyhedral-like carbon nanostructures.

  26. 26.

    The nanocapsule images above are reproduced with permission of Elsevier Science (left, Materials Chemistry and Physics, 2010, 122, 164–168) and Hindawi (right, Journal of Nanotechnology, Volume 2012, Article ID 613746, 6 pp.).

  27. 27.

    The nanotree image above is reproduced with permission of the American Chemical Society (Nano Lett., 2009, 9(1), 239–244).

  28. 28.

    The nanobush image above was reproduced with permission of the American Institute of Physics (Appl. Phys. Lett., 2006, 89, 223102).

  29. 29.

    The nanomushroom image above was reproduced with permission of the Royal Society of Chemistry (Chem. Commun., 2009, (24), 3615–3617.).

  30. 30.

    The nanoflower image above was reproduced with permission of the American Chemical Society (J. Phys. Chem. B, 2005, 109, 10779–10785).

  31. 31.

    The nanobouquet image above was reproduced with permission of the http://radio-weblogs.com/0105910/2004/06/22.html

  32. 32.

    The nanograss image above was reproduced with permission of the American Chemical Society (J. Phys. Chem.C, 2010, 114(7), 2936–2940.).

  33. 33.

    The nanoworm image above was reproduced with permission of the American Chemical Society (J. Phys. Chem. C, 2008, 112(1), 106–111).

  34. 34.

    Image reproduced with permission of the Royal Society of Chemistry (J. Mater. Chem., 2006, 16(29), 2984–2989).

  35. 35.

    The nanobowl image is reproduced with permission of the American Chemical Society (Langmuir, 2009, 25(3), 1822–1827).

  36. 36.

    The nanoplate image is reproduced with permission of the American Chemical Society (ACS Appl. Mater. Interfaces, 2016, 8(43), 29628–29636).

  37. 37.

    We note that KOH activation was also used for other nanocarbons (see previous sections).

  38. 38.

    The nanobrush image above is reproduced with permission of Springer (J. Mater. Sci. Mater. Med. 2015, 26(1), 5356).

  39. 39.

    The nanocarpet image above is reproduced with permission of the American Chemical Society (Nano Lett., 2005, 5(12), 2394–2398).

  40. 40.

    The nanoweb image above is reproduced with permission of the Elsevier Science (Energy, 2013, 55, 925–932).

  41. 41.

    The nanosponge images above are reproduced with permission of Nature (Sci. Rep., 2012, 2, Article number: 363).

  42. 42.

    Applications of nanomaterials for oil remediation were recently reviewed. (a) Journal of Petroleum Science and Engineering, 2014, 122, 705–718; (b) Nanomaterial-based methods for cleaning contaminated water in oil spill sites. In: Nanotechnology for Energy Sustainability. B. Raj, M. Van de Voorde, Y. Mahajan (Eds.), Wiley-VCH, 2016, 1139–1160.).

  43. 43.

    The nanofoam image above is reproduced with permission of the Springer (Nanoscale Res. Lett., 2013, 8, 233).

  44. 44.

    The nanocoil images above are reproduced with permission of AIP Publishing Co. (up, AIP Adv., 2015, 5, 117114.) and Elsevier Science (down, Comput. Mater. Sci., 2012, 55, 344–349).

  45. 45.

    The nanotweezer image is reproduced with permission of the American Chemical Society (J. Am. Chem. Soc., 2012, 134, 9183–9192).

  46. 46.

    The nanomesh images above are reproduced with permission of the Royal Society of Chemistry (J. Mater. Chem. A, 2017, 5, 9709–9716).

  47. 47.

    The nanojunction image above is reproduced with permission of the American Chemical Society (J. Phys. Chem. Lett., 2013, 4(5), 809–814).

  48. 48.

    The nanopaper image above is reproduced with permission of the Elsevier Science (Composites: Part B, 2012, 43, 3293–3305).

  49. 49.

    The nanobattery image above is reproduced with permission of Wiley (Adv. Sci., 2016, 3, 1600113).

  50. 50.

    The E-nose image above is reproduced with permission from Springer (Anal. Bioanal. Chem., 2014, 406(16), 3985–3994).

  51. 51.

    The nanocube image above is reproduced with permission of Elsevier Science (Nano Energy, 2015, 16, 268–280).

  52. 52.

    “For the CB electrode, the nanopores are formed between CB nanoparticles. During the discharge process, the nanopores are easily to be blocked by the discharge products in the initial discharge process. The MCC electrode consists of carbon nanocubes. Each carbon nanocube contains numerous mesopores, which can facilitate the electrolyte impregnation and oxygen diffusion. Furthermore, large amount of macropores is also formed between carbon nanocubes.” (adapted from Adv. Funct. Mater. 2015, 25, 4436–4444).

  53. 53.

    The nanoprism image above is reproduced with permission of Elsevier Science (Appl. Surf. Sci., 2009, 255, 5939–5942).

References

  1. B.I. Kharisov, O.V. Kharissova, U. Ortiz Mendez, Handbook on Less-Common Nanostructures (CRC Press, Boca Raton, 2012)

    Google Scholar 

  2. G.G. Parigger, J.O. Hornkohl, A.M. Keszler, L. Nemes, Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite. Appl. Opt. 42(30), 6192–6198 (2003)

    Article  CAS  Google Scholar 

  3. C.G. Parigger, A.C. Woods, D.M. Surmick, et al., Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta B At. Spectrosc. 107, 132–138 (2015)

    Article  CAS  Google Scholar 

  4. R. Hoffmann, Marginalia: C2 in all its guises. Am. Sci. 83(4), 309–311 (1995)

    Google Scholar 

  5. P.B. Shevlin, Formation of atomic carbon in the decomposition of 5-tetrazolyldiazonium chloride. J. Am. Chem. Soc. 94(4), 1379–1380 (2002)

    Article  Google Scholar 

  6. S.A. Krasnokutski, F.A. Huisken, A simple and clean source of low-energy atomic carbon. Appl. Phys. Lett. 105(11), 113506 (2014)

    Article  CAS  Google Scholar 

  7. S. Shaik, D. Danovich, W. Wu, P. Su, H.S. Rzepa, P.C. Hiberty, Quadruple bonding in C2 and analogous eight-valence electron species. Nat. Chem. 4, 195–200 (2012)

    Article  CAS  Google Scholar 

  8. J.M. Matxain, F. Ruipérez, I. Infante, X. Lopez, J.M. Ugalde, G. Merino, M. Piris, Chemical bonding in carbon dimer isovalent series from the natural orbital functional theory perspective. J. Chem. Phys. 138, 151102 (2013)

    Article  CAS  Google Scholar 

  9. P.S. Skell, J.H. Plonka, Chemistry of the singlet and triplet C2 molecules. Mechanism of acetylene formation from reaction with acetone and acetaldehyde. J. Am. Chem. Soc. 92(19), 5620–5624 (1970)

    Article  CAS  Google Scholar 

  10. B. Garg, T. Bisht, Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21, 1653, 16 pp (2016)

    Article  CAS  Google Scholar 

  11. J. Wang, H. Soo Choi, Y.-X.J. Wáng, Exponential growth of publications on carbon nanodots by Chinese authors. J. Thorac Dis. 7(7), E201–E205 (2015)

    Google Scholar 

  12. A.M. Ibarra-Ruiz, D.C. Rodríguez Burbano, J.A. Capobianco, Photoluminescent nanoplatforms in biomedical applications. Adv. Phys. 1(2), 194–225 (2016)

    Google Scholar 

  13. Q. Li, T.Y. Ohulchanskyy, R.L. Liu, K. Koynov, D.Q. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 114, 12062–12068 (2010)

    Article  CAS  Google Scholar 

  14. J. Zuo, T. Jiang, X. Zhao, X. Xiong, S. Xiao, Z. Zhu, Preparation and application of fluorescent carbon dots. J. Nanomater. 2015, 787862, 13 pp (2015)

    Article  CAS  Google Scholar 

  15. P. Roy, P.-C. Chen, A.P. Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater. Today 18(8), 447–458 (2015)

    Article  CAS  Google Scholar 

  16. Y. Song, S. Zhu, B. Yang, Bioimaging based on fluorescent carbon dots. RSC Adv. 4, 27184–27200 (2014)

    Article  CAS  Google Scholar 

  17. S.H. Song, M.-H. Jang, J. Chung, S.H. Jin, B.H. Kim, et al., Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds. Adv. Opt. Mater. 2(11), 1016–1023 (2014)

    Article  CAS  Google Scholar 

  18. X. Han, S. Zhong, W. Pan, W. Shen, A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers. Nanotechnology 26, 065402, 11 pp (2015)

    Article  CAS  Google Scholar 

  19. J. Zhang, F. Zhang, Y. Yang, et al., Composites of graphene quantum dots and reduced graphene oxide as catalysts for nitroarene reduction. ACS Omega 2, 7293–7298 (2017)

    Article  CAS  Google Scholar 

  20. Y. Cheng, B. Li, B. Li, B. Li, L. Wang, D. Wei, Y. Feng, D. Jia, Fluorescent zinc doped carbon nanodots derived from chitosan/metal ions complex for cell imaging. Nanomedicine 12(2), 506–507 (2016)

    Article  Google Scholar 

  21. W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. J. Nanopart. Res. 15, 1344 (2013)

    Article  CAS  Google Scholar 

  22. X. Qin, W. Lu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sensors Actuators B 184, 156–162 (2013)

    Article  CAS  Google Scholar 

  23. A. Loukanov, R. Sekiya, M. Yoshikawa, N. Kobayashi, Y. Moriyasu, S. Nakabayashi, Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging. J. Phys. Chem. C 120(29), 15867–15874 (2016)

    Article  CAS  Google Scholar 

  24. V. Strauss, J.T. Margraf, C. Dolle, et al., Carbon nanodots: toward a comprehensive understanding of their photoluminescence. J. Am. Chem. Soc. 136(49), 17308–17316 (2014)

    Article  CAS  Google Scholar 

  25. H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)

    Article  CAS  Google Scholar 

  26. B.-P. Qi, L. Bao, Z.-L. Zhang, D.-W. Pang, Electrochemical methods to study photoluminescent carbon nanodots: preparation, photoluminescence mechanism and sensing. ACS Appl. Mater. Interfaces 8(42), 28372–28382 (2016)

    Article  CAS  Google Scholar 

  27. D. Reyes, M. Camacho, M. Camacho, et al., Laser ablated carbon nanodots for light emission. Nanoscale Res. Lett. 11, 424, 11 pp (2016)

    Article  CAS  Google Scholar 

  28. A. Jose Amali, H. Hoshino, C. Wu, M. Ando, Q. Xu, From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem. 20(27), 8279–8282 (2014)

    Article  CAS  Google Scholar 

  29. S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, M.J. Heller, White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 124, 479–485 (2017)

    Article  CAS  Google Scholar 

  30. J. Zhang, S.-H. Yu, Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)

    Article  CAS  Google Scholar 

  31. J. Xu, T. Lai, Z. Feng, X. Weng, C. Huang, Formation of fluorescent carbon nanodots from kitchen wastes and their application for detection of Fe3+. Luminescence 30(4), 420–424 (2015)

    Article  CAS  Google Scholar 

  32. S.A. Chechetka, E. Miyako, Optical regulation of carbon nanodots by chemical functionalization. Chem. Lett. 45(8), 854–856 (2016)

    Article  CAS  Google Scholar 

  33. A.B. Bourlinos, A. Bakandritsos, A. Kouloumpis, D. Gournis, M. Krysmann, E.P. Giannelis, K. Polakova, K. Safarova, K. Hola, et al., Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22, 23327–23330 (2012)

    Article  CAS  Google Scholar 

  34. J. Zhang, L. Tang, G. Hu, et al., Carbon nanodots-based nanocomposites with enhanced photocatalytic Performance and photothermal effects. Appl. Phys. Lett. 111, 013904 (2017)

    Article  CAS  Google Scholar 

  35. M. Li Liu, B. Bin Chen, T. Yang, et al., One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods Appl. Fluoresc. 5(1), 015003 (2017)

    Article  CAS  Google Scholar 

  36. J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)

    Article  CAS  Google Scholar 

  37. C.-L. Shen, L.-X. Su, J.-H. Zang, et al., Carbon nanodots as dual-mode nanosensors for selective detection of hydrogen peroxide. Nanoscale Res. Lett. 12, 447, 10 pp (2017)

    Article  CAS  Google Scholar 

  38. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. J. Chem. Soc. Chem. Commun. 48, 3686–3699 (2012)

    Article  CAS  Google Scholar 

  39. W. Dai, Y. Lei, M. Xu, et al., Rare-earth free self-activated graphene quantum dots and copper-cysteamine phosphors for enhanced white light-emitting-diodes under single excitation. Sci. Rep. 7, 12872 (2017)

    Article  CAS  Google Scholar 

  40. A. Kocsis, S.W. Cranford, Carbyne: a one dimensional carbon allotrope, in Carbon Nanomaterials Sourcebook. Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites, ed. by K. D. Sattler (Ed), vol. II, (CRC Press, Boca Raton, FL, USA, 2016), pp. 3–25

    Chapter  Google Scholar 

  41. J.M. Alred, N. Gupta, M. Liu, Z. Zhang, B.I. Yakobson, Mechanics of materials creation: nanotubes, graphene, carbyne, borophenes. 2016 IUTAM Symposium on Nanoscale Physical Mechanics. Procedia IUTAM 21, 17–24 (2017)

    Article  Google Scholar 

  42. C.R. Ma, J. Xiao, G.W. Yang, Giant nonlinear optical responses of carbyne. J. Mater. Chem. C 4, 4692–4698 (2016)

    Article  CAS  Google Scholar 

  43. L. Shi, P. Rohringer, K. Suenaga, et al., Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 15, 634–640 (2016)

    Article  CAS  Google Scholar 

  44. B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: the one-dimensional sp carbon. Sci. Adv. 1(9), e1500857 (2015)

    Article  Google Scholar 

  45. E.A. Belenkov, V.V. Mavrinsky, Crystal structure of a perfect carbyne. Crystallogr. Rep. 53(1), 83–87 (2008)

    Article  CAS  Google Scholar 

  46. G.M. Demyashev, A.L. Taube, E. Siores, Surface modification of titanium carbide with carbyne-containing nanocoatings. J. Nanosci. Nanotechnol. 2(2), 133–137 (2002)

    Article  CAS  Google Scholar 

  47. Q. Sun, L. Cai, S. Wang, Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138(4), 1106–1109 (2016)

    Article  CAS  Google Scholar 

  48. A.K. Nair, S.W. Cranford, M.J. Buehler, The minimal nanowire: mechanical properties of carbyne. EPL 95, 16002, 5 pp (2011)

    Article  CAS  Google Scholar 

  49. M. Wang, S. Lin, Ballistic thermal transport in carbyne and cumulene with micron-scale spectral acoustic phonon mean free path. Sci. Rep. 5, 18122 (2015)

    Article  CAS  Google Scholar 

  50. S. Kotrechko, I. Mikhailovskij, T. Mazilova, E. Sadanov, A. Timoshevskii, N. Stetsenko, Y. Matviychuk, Mechanical properties of carbyne: experiment and simulations. Nanoscale Res. Lett. 10, 24 (2015)

    Article  CAS  Google Scholar 

  51. Y. NuLi, Q. Chen, W. Wang, et al., Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries. Sci. World J. 2014, 107918, 7 pp (2014)

    Article  CAS  Google Scholar 

  52. F. Cataldo, Y. Keheyan, Generation of higher fullerenes from laser ablation of carbyne and C60 photopolymer astrochemical implications. Fullerenes, Nanotubes, Carbon Nanostruct. 10, 99–106 (2002)

    Article  CAS  Google Scholar 

  53. S. Kotrechko, A. Timoshevskii, E. Kolyvoshko, Y. Matviychuk, N. Stetsenko, Thermomechanical stability of carbyne-based nanodevices. Nanoscale Res. Lett. 12, 327 (2017)

    Article  CAS  Google Scholar 

  54. F. Banhart, Chains of carbon atoms: a vision or a new nanomaterial? Beilstein J. Nanotechnol. 6, 559–569 (2015)

    Article  CAS  Google Scholar 

  55. L. Shen, M. Zeng, S.-W. Yang, C. Zhang, X. Wang, Y. Feng, Electron transport properties of atomic carbon nanowires between graphene electrodes. J. Am. Chem. Soc. 132(33), 11481–11486 (2010)

    Article  CAS  Google Scholar 

  56. R.Y. Oeiras, E.Z. da Silva, Bond length and electric current oscillation of long linear carbon chains: density functional theory, MpB model, and quantum spin transport studies. J. Chem. Phys. 140, 134703 (2014)

    Article  CAS  Google Scholar 

  57. G. Onida, N. Manini, L. Ravagnan, E. Cinquanta, D. Sangalli, P. Milani, Vibrational properties of sp carbon atomic wires in cluster-assembled carbon films. Phys. Status Solidi 247(8), 2017–2021 (2010)

    Article  CAS  Google Scholar 

  58. C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)

    Article  CAS  Google Scholar 

  59. C.S. Casari, C.S. Giannuzzi, V. Russo, Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon 104, 190–195 (2016)

    Article  CAS  Google Scholar 

  60. O. Cretu, A.R. Botello-Mendez, I. Janowska, et al., Electrical transport measured in atomic carbon chains. Nano Lett. 13, 3487–3493 (2013)

    Article  CAS  Google Scholar 

  61. N. Tayebi, Y. Narui, R.J. Chen, C.P. Collier, K.P. Giapis, Y. Zhang, Nanopencil as a wear-tolerant probe for ultrahigh density data storage. Appl. Phys. Lett. 93(10), 103112/1–103112/3 (2008)

    Article  CAS  Google Scholar 

  62. A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2, 156–161 (2007)

    Article  CAS  Google Scholar 

  63. Y. Tian, D. Chassaing, A.G. Nasibulin, P. Ayala, H. Jiang, A.S. Anisimov, A. Hassanien, E.I. Kauppinen, The local study of a nanoBud structure. Phys. Status Solidi B 245(10), 2047–2050 (2008)

    Article  CAS  Google Scholar 

  64. http://www.nanodic.com/carbon/Carbon_nanobud.htm. Accessed on May 5, 2016

  65. B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, Handbook of Less-Common Nanostructures (CRC Press, 2012), 862 pp

    Google Scholar 

  66. A.G. Nasibulin, A.S. Anisimov, P.V. Pikhitsa, H. Jiang, D.P. Brown, M. Choi, E.I. Kauppinen, Investigations of NanoBud formation. Chem. Phys. Lett. 446, 109–114 (2007)

    Article  CAS  Google Scholar 

  67. A. Anisimov, Aerosol synthesis of carbon nanotubes and nanobuds. Ph.D. thesis, Aalto University, Finland, 2010

    Google Scholar 

  68. R.J. Nicholls, J. Britton, S. Shayan Meysami, A.A. Koos, N. Grobert, In situ engineering of NanoBud geometries. Chem. Commun. 49, 10956–10958 (2013)

    Article  CAS  Google Scholar 

  69. M. Ghorbanzadeh Ahangari, M.D. Ganji, F. Montazar, Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun. 203, 58–62 (2015)

    Article  CAS  Google Scholar 

  70. H.Y. He, B.C. Pan, Electronic structures and Raman features of a carbon Nanobud. J. Phys. Chem. C 113, 20822–20826 (2009)

    Article  CAS  Google Scholar 

  71. X. Wu, X. Cheng Zeng, First-principles study of a carbon Nanobud. ACS Nano 287, 1459–1465 (2008)

    Article  CAS  Google Scholar 

  72. J. Il Choi, H. Seok Kim, H. Seul Kim, G. In Lee, J.K. Kang, Y.-H. Kim, Carbon nanobuds based on carbon nanotube caps: a first-principles study. Nanoscale 8, 2343–2349 (2016)

    Article  CAS  Google Scholar 

  73. X. Yang, L. Wang, Y. Huang, Z. Han, A.C. To, Carbon nanotube–fullerene hybrid nanostructures by C60 bombardment: formation and mechanical behavior. Phys. Chem. Chem. Phys. 16(39), 21615–21619 (2014)

    Article  CAS  Google Scholar 

  74. X. Yang, L. Wang, Y. Huang, A.C. To, B. Cao, Effects of nanobuds and heat welded nanobuds chains on mechanical behavior of carbon nanotubes. Comput. Mater. Sci. 109, 49–55 (2015)

    Article  CAS  Google Scholar 

  75. X. Zhu, H. Su, Magnetism in hybrid carbon nanostructures: Nanobuds. Phys. Rev. B 79, 165401 (2009)

    Article  CAS  Google Scholar 

  76. J. Yazdani, A. Bahrami, Topological index of carbon Nanobud. Aust. J. Basic Appl. Sci. 4(8), 3575–3577 (2010)

    CAS  Google Scholar 

  77. Z. Haseeb, A. Kumari, Study of the optical properties of SWCNT and nanobuds. IJECT 6(4), 45–48 (2015)

    Google Scholar 

  78. S. Gorantla, F. Börrnert, A. Bachmatiuk, M. Dimitrakopoulou, R. Schönfelder, F. Schäffel, J. Thomas, T. Gemming, E. Borowiak-Palen, J.H. Warner, B.I. Yakobson, J. Eckert, B. Büchnera, M.H. Rümmeli, In situ observation of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2, 2077–2079 (2010)

    Article  CAS  Google Scholar 

  79. Y. Tian. Optical Properties of Single-walled Carbon Nanotubes and Nanobuds. Ph.D. Thesis, Aalto University, 2012

    Google Scholar 

  80. Y. Tian, Combined Raman spectroscopy and transmission electron microscopy studies of a NanoBud structure. J. Am. Chem. Soc. 130, 7188–7189 (2008)

    Article  CAS  Google Scholar 

  81. X.X. Yang, Z.F. Zhou, Y. Wang, J.W. Li, N.G. Guo, W.T. Zheng, J.Z. Peng, C.Q. Sun, Raman spectroscopic determination of the length, energy, Debye temperature, and compressibility of the C–C bond in carbon allotropes. Chem. Phys. Lett. 575, 86–90 (2013)

    Article  CAS  Google Scholar 

  82. P. Havu, A. Sillanpaa, N. Runeberg, J. Tarus, E.T. Seppala, R.M. Nieminen, Effects of chemical functionalization on electronic transport in carbon nanobuds. Phys. Rev. B 85, 115446 (2012)

    Article  CAS  Google Scholar 

  83. W. Koh, J. Hye Lee, S. Geol Lee, J. Il Choic, S. Soon Jang, Li adsorption on a graphene–fullerene nanobud system: density functional theory approach. RSC Adv. 5, 32819–32825 (2015)

    Article  CAS  Google Scholar 

  84. H.W. Kroto, The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329, 529–531 (1987)

    Article  CAS  Google Scholar 

  85. H.W. Kroto, C60B buckminsterfullerene, other fullerenes and the icospiral shell. Comp. Math. Appl. 17(1–3), 417–423 (1989)

    Article  Google Scholar 

  86. P.W. Dunk, N.K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J.M. Poblet, H. Shinohara, C.L. Hendrickson, A.G. Marshall, H.W. Kroto, The smallest stable Fullerene, M@C28 (M = Ti, Zr, U): stabilization and growth from carbon vapor. J. Am. Chem. Soc. 134(22), 9380–9389 (2012)

    Article  CAS  Google Scholar 

  87. X. Lu, Z. Chen, Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005)

    Article  CAS  Google Scholar 

  88. G.C. Loha, D. Baillargeat, Thermal transport in C20 fullerene-chained carbon nanobuds. J. Appl. Phys. 113, 123504 (2013)

    Article  CAS  Google Scholar 

  89. E.F. Sheka, L.Kh. Shaymardanova, C60-based composites in view of topochemical reactions. III. C60 + graphene nanobuds. arXiv:1106.0644 [cond-mat.mtrl-sci], Cornell University Library, 2011

    Google Scholar 

  90. A. Fereidoon, M. Khorasani, M. Darvish Ganji, F. Memarian, Atomistic simulation study of mechanical properties of periodic graphene nanobuds. Comput. Mater. Sci. 107, 163–169 (2015)

    Article  CAS  Google Scholar 

  91. M.B.E. Griffiths, S.E. Koponen, D.J. Mandia, J.F. McLeod, J.P. Coyle, J.J. Sims, J.B. Giorgi, E.R. Sirianni, G.P.A. Yap, S.T. Barry, Surfactant directed growth of gold metal nanoplates by chemical vapor deposition. Chem. Mater. 27, 6116–6124 (2015)

    Article  CAS  Google Scholar 

  92. C. Deng, W. Ma, J.-L. Sun, Fabrication of highly rough Ag nanobud substrates and surface-enhanced raman scattering of λ-DNA molecules. J. Nanomater 2012, 820739, 5 pp (2012)

    Google Scholar 

  93. D.S. Choi, A.O. Fung, H. Moon, G. Villareal, Y. Chen, D. Ho, N. Presser, G. Stupian, M. Leung, Detection of neural signals with vertically grown single platinum nanowire-nanobud. J. Nanosci. Nanotechnol. 9(11), 6483–6486(4) (2009)

    Article  CAS  Google Scholar 

  94. R. Colin Johnson, Carbon nanobuds flex, replace indium tin oxide. Unique nanobuds stretch, bend, flex. http://www.eetimes.com/document.asp?doc_id=1324698. Accessed May 5, 2016

  95. D.P. Brown, B.J. Aitchison, Uses of a carbon nanobud molecule and devices comprising the same. EP 2308112 A1, 2011; WO 2009156596 A1, 2009

    Google Scholar 

  96. D.P. Brown, B.J. Aitchison, Uses of a carbon nanobud molecule and devices comprising the same. Patent US 20110127488, 2011

    Google Scholar 

  97. I.V. Anoshkin, A.G. Nasibulin, P.R. Mudimela, M. He, V. Ermolov, E.I. Kauppinen, Single-walled carbon nanotube networks for ethanol vapor sensing applications. Nano Res. 6(2), 77–86 (2013)

    Article  CAS  Google Scholar 

  98. D. E. Luzzi. Synthesis, structure, and properties of fullerene and nonfullerene nanopeapods, in Abstracts of Papers, 225th ACS National Meeting, New Orleans, 23–27 March 2003, COLL-370

    Google Scholar 

  99. T. Okazaki, H. Shinohara, Nano-peapods encapsulating fullerenes, in Applied Physics of Carbon Nanotubes, ed. by S. V. Rotkin, S. Subramoney (Eds), (Springer, New York, 2005), pp. 133–150

    Google Scholar 

  100. T. Okazaki, S. Okubo, T. Nakanishi, S.-K. Joung, T. Saito, M. Otani, S. Okada, S. Bandow, S. Iijima, Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. J. Am. Chem. Soc. 130, 4122–4128 (2008)

    Article  CAS  Google Scholar 

  101. Q. Wang, R. Kitaura, Y. Yamamoto, S. Arai, H. Shinohara, Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods. Nano Res. 7(12), 1843–1848 (2014)

    Article  CAS  Google Scholar 

  102. Y. Cho, S. Han, G. Kim, H. Lee, J. Ihm, Orbital hybridization and charge transfer in carbon nanopeapods. Phys. Rev. Lett. 90(10), 106402/1–106402/4 (2003)

    Article  CAS  Google Scholar 

  103. T. Yumura, M. Kertesz, S. Iijima, Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. J. Phys. Chem. B 111(5), 1099–1109 (2007)

    Article  CAS  Google Scholar 

  104. R. Kitaura, H. Shinohara, Carbon-nanotube-based hybrid materials. Nanopeapods. Chem. Asian J. 1(5), 646–655 (2006)

    Article  CAS  Google Scholar 

  105. A.N. Enyashin, A.L. Ivanovskii, Atomic structure and electronic properties of nanopeapods: isomers of endohedral dititanofullerenes Ti2@C80 in carbon nanotubes. Zh. Neorg. Khim. 51(9), 1576–1585 (2006)

    CAS  Google Scholar 

  106. I.V. Krive, R. Ferone, R.I. Shekhter, M. Jonson, P. Utko, J. Nygaard, The influence of electro-mechanical effects on resonant electron tunneling through small carbon nano-peapods. New J. Phys. 10(Apr.), 043043 (2008)

    Article  CAS  Google Scholar 

  107. D. Baowan, N. Thamwattana, J.M. Hill, Encapsulation of C60 fullerenes into single-walled carbon nanotubes: Fundamental mechanical principles and conventional applied mathematical modeling. Phys. Rev. B: Condens. Matter Mater. Phys. 76(15), 155411/1–155411/8 (2007)

    Article  CAS  Google Scholar 

  108. A. Gloter, K. Suenaga, H. Kataura, R. Fujii, T. Kodama, H. Nishikawa, I. Ikemoto, K. Kikuchi, S. Suzuki, Y. Achiba, S. Iijima, Structural evolutions of carbon nano-peapods under electron microscopic observation. Chem. Phys. Lett. 390(4–6), 462–466 (2004)

    Article  CAS  Google Scholar 

  109. R. Pati, L. Senapati, P.M. Ajayan, S.K. Nayak, Theoretical study of electrical transport in a fullerene-doped semiconducting carbon nanotubes. J. Appl. Phys. 95(2), 694–697 (2004)

    Article  CAS  Google Scholar 

  110. Y. Liu, R.O. Jones, X. Zhao, Y. Ando, Carbon species confined inside carbon nanotubes: A density functional study. Phys. Rev. B: Condens. Matter Mater. Phys. 68(12), 125413/1–125413/7 (2003)

    CAS  Google Scholar 

  111. H. Terrones, Beyond Carbon Nanopeapods. ChemPhysChem 13(9), 2273–2276 (2012)

    Article  CAS  Google Scholar 

  112. S. Rols, J. Cambedouzou, M. Chorro, H. Schober, V. Agafonov, P. Launois, V. Davydov, A.V. Rakhmanina, H. Kataura, J.-L. Sauvajol, How confinement affects the dynamics of C60 in carbon nanopeapods. Phys. Rev. Lett. 101(6), 065507/1–065507/4 (2008)

    Article  CAS  Google Scholar 

  113. E. Hernandez, V. Meunier, B.W. Smith, R. Rurali, H. Terrones, M. Buongiorno Nardelli, M. Terrones, D.E. Luzzi, J.-C. Charlier, Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3(8), 1037–1042 (2003)

    Article  CAS  Google Scholar 

  114. J.H. Warner, Y. Ito, M. Zaka, L. Ge, T. Akachi, H. Okimoto, K. Porfyrakis, A.A.R. Watt, H. Shinohara, G.A.D. Briggs, Rotating fullerene chains in carbon nanopeapods. Nano Lett. 8(8), 2328–2335 (2008)

    Article  CAS  Google Scholar 

  115. A.N. Sohi, R. Naghdabadi, Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure. Physica E Low Dimens. Syst. Nanostruct. 41(3), 513–517 (2009)

    Article  CAS  Google Scholar 

  116. L. Cui, Y. Feng, X. Zhang, Dependence of thermal conductivity of carbon nanopeapods on filling ratios of fullerene molecules. J. Phys. Chem. A 119(45), 11226–11232 (2015)

    Article  CAS  Google Scholar 

  117. L. Guan, K. Suenaga, S. Okubo, T. Okazaki, S. Iijima, Metallic wires of lanthanum atoms inside carbon nanotubes. J. Am. Chem. Soc. 130(7), 2162–2163 (2008)

    Article  CAS  Google Scholar 

  118. K. Suenaga, R. Taniguchi, T. Shimada, T. Okazaki, H. Shinohara, S. Iijima, Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod. Nano Lett. 3(10), 1395–1398 (2003)

    Article  CAS  Google Scholar 

  119. R. Kitaura, H. Okimoto, H. Shinohara, Magnetism of the endohedral metallofullerenes M@C82 (M=Gd, Dy) and the corresponding nanoscale peapods: Synchrotron soft x-ray magnetic circular dichroism and density-functional theory calculations. Phys. Rev. B 76, 172409 (2007)

    Article  CAS  Google Scholar 

  120. Y. Sato, K. Suenaga, S. Bandow, S. Iijima, Site-dependent migration behavior of individual cesium ions inside and outside C60 fullerene nanopeapods. Small 4(8), 1080–1083 (2008)

    Article  CAS  Google Scholar 

  121. K. Urita, Y. Sato, K. Suenaga, A. Gloter, A. Hashimoto, M. Ishida, T. Shimada, H. Shinohara, S. Iijima, Defect-induced atomic migration in carbon nanopeapod: tracking the single-atom dynamic behavior. Nano Lett. 4(12), 2451–2454 (2004)

    Article  CAS  Google Scholar 

  122. A. Trave, F.J. Ribeiro, S.G. Louie, M.L. Cohen, Energetics and structural characterization of C60 polymerization in BN and carbon nanopeapods. Phys. Rev. 70, 205418 (2004)

    Article  CAS  Google Scholar 

  123. V. Timoshevskii, M. Cote, Doping of C60-induced electronic states in BN nanopeapods: Ab initio simulations. Phys. Rev. B: Condens. Matter Mater. Phys. 80(23), 235418/1–235418/5 (2009)

    Article  CAS  Google Scholar 

  124. X. Li, W. Yang, B. Liu, Fullerene coalescence into metallic heterostructures in boron nitride nanotubes: a molecular dynamics study. Nano Lett. 7(12), 3709–3715 (2007)

    Article  CAS  Google Scholar 

  125. S. Tsuruoka, H. Matsumoto, V. Castranov, et al., Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: classification by physical and chemical structures. Carbon 95, 302–308 (2015)

    Article  CAS  Google Scholar 

  126. J. Su, Y. Gao, R. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules. Mater. Lett. 64(6), 680–683 (2010)

    Article  CAS  Google Scholar 

  127. D.B. Dougherty, W. Jin, W.G. Cullen, G. Dutton, J.E. Reutt-Robey, S.W. Robey, Local transport gap in C60 nanochains on a pentacene template. Phys. Rev. B: Condens. Matter Mater. Phys. 77(7), 073414/1–073414/4 (2008)

    Article  CAS  Google Scholar 

  128. M. Zhang, C. He, E. Liu, et al., Activated carbon nanochains with tailored micro-meso pore structures and their application for supercapacitors. J. Phys. Chem. C 119(38), 21810–22181 (2015)

    Article  CAS  Google Scholar 

  129. B. Sahu, H. Min, S.K. Banerjee, Effects of magnetism and electric field on the energy gap of bilayer graphene nanobars. arXiv.org, e-Print Archive, Condensed Matter, 2009, 1–6, arXiv:0910.2719v1 [cond-mat.mtrl-sci]. Publisher: Cornell University Library

    Google Scholar 

  130. T. Krupenkin, Nanograss, nanobricks, nanonails, and other things useful in your nanolandscaping, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, 22–26 Mar 2009, POLY-333

    Google Scholar 

  131. S.K. Sonkar, M. Saxena, M. Saha, S. Sarkar, Carbon nanocubes and nanobricks from pyrolysis of rice. J. Nanosci. Nanotechnol. 10(6), 4064–4067 (2010)

    Article  CAS  Google Scholar 

  132. X. Wang, C.-m. Zhao, T. Deng, et al., From amorphous carbon to carbon nanobelts and vertically oriented graphene nanosheets synthesized by plasma-enhanced chemical vapor deposition. Chem. Res. Chin. Univ. 29(4), 755–758 (2013)

    Article  CAS  Google Scholar 

  133. X. Lu, J. Wu, After 60 years of efforts: the chemical synthesis of a carbon nanobelt. Chem 2(5), 619–620 (2017)

    Article  CAS  Google Scholar 

  134. J. Liu, M. Shao, Q. Tang, S. Zhang, Y. Qian, Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. J. Phys. Chem. B 107, 6329–6332 (2003)

    Article  CAS  Google Scholar 

  135. X. Sun, Z. Xing, R. Ning, A.M. Asiri, A.Y. Obaid, Carbon nanobelts as a novel sensing platform for fluorescence-enhanced DNA detection. Analyst 139, 2318–2321 (2014)

    Article  CAS  Google Scholar 

  136. C.-T. Lin, T.-H. Chen, T.-S. Chin, C.-Y. Lee, H.-T. Chiu, et al., Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon 46, 741–746 (2008)

    Article  CAS  Google Scholar 

  137. T. Ouyang, K. Cheng, F. Yang, et al., From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 5, 14551–14561 (2017)

    Article  CAS  Google Scholar 

  138. Q. Xia, H. Zhao, Z. Du, et al., Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochim. Acta 180, 947–956 (2015)

    Article  CAS  Google Scholar 

  139. Q. Zhao, L. Jiao, W. Peng, et al., Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J. Power Sources 199, 350–354 (2012)

    Article  CAS  Google Scholar 

  140. C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13, 1700834, 12 pp (2017)

    Article  CAS  Google Scholar 

  141. G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Synthesis of a carbon nanobelt. Science 356, 172–175 (2017)

    Article  CAS  Google Scholar 

  142. K. Matsui, M. Fushimi, Y. Segawa, K. Itami, Synthesis, structure, and reactivity of a cylinder-shaped cyclo[12]orthophenylene[6]ethynylene: toward the synthesis of zigzag carbon nanobelts. Org. Lett. 18, 5352–5355 (2016)

    Article  CAS  Google Scholar 

  143. Y. Segawa, A. Yagi, H. Ito, K. Itami, A theoretical study on the strain energy of carbon nanobelts. Org. Lett. 18, 1430–1433 (2016)

    Article  CAS  Google Scholar 

  144. Y. Ren, G. Pastorin, Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv. Mater. 20(11), 2031–2036 (2008)

    Article  CAS  Google Scholar 

  145. A.V. Vakhrushev, M.V. Suyetin, Methane storage in bottle-like nanocapsules. Nanotechnology 20, 125602 (2009)

    Article  CAS  Google Scholar 

  146. R.K. Lee, J.M. Hill, Design parameters for carbon nanobottles to absorb and store methane. J. Nanosci. Nanotechnol. 11(8), 6893–6903 (2011)

    Article  CAS  Google Scholar 

  147. J. Li, S.L. Yoong, W.J. Goh, et al., In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages. Int. J. Nanomedicine 10, 7425–7441 (2015)

    CAS  Google Scholar 

  148. N. Yang, G. Zhang, B. Li, Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)

    Article  CAS  Google Scholar 

  149. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, A method for computing the Wiener index of one-pentagonal carbon nanocones. Curr. Nanosci. 6(2), 155–157 (2010)

    Article  CAS  Google Scholar 

  150. E. Brito, A. Freitas, T. Silva, T. Guerra, S. Azevedo, Double-walled carbon nanocones: stability and electronic structure. Eur. Phys. J. B. 88, 153 (2015)

    Article  CAS  Google Scholar 

  151. I. Levchenko, K. Ostrikov, J. Khachan, S.V. Vladimirov, Growth of carbon nanocone arrays on a metal catalyst: the effect of carbon flux ionization. Phys. Plasmas 15, 103501 (2008)

    Article  CAS  Google Scholar 

  152. R. Ansari, A. Momen, S. Rouhi, S. Ajori, On the vibration of single-walled carbon nanocones: molecular mechanics approach versus molecular dynamics simulations. Shock. Vib. 2014, 410783, 8 pp (2014)

    Google Scholar 

  153. S. Rouhi, R. Ansariy, S. Nickabadiz, Modal analysis of double-walled carbon nanocones using the nite element method. Int. J. Mod. Phys. B 31, 1750262, 18 pp (2017)

    Article  CAS  Google Scholar 

  154. W. Huang, J. Xu, X. Lu, Tapered carbon nanocone tips obtained by dynamic oxidation in air. RSC Adv. 6, 25541–25548 (2016)

    Article  CAS  Google Scholar 

  155. I.-C. Chen, L.-H. Chen, X.-R. Ye, C. Daraio, S. Jin, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102 (2006)

    Article  CAS  Google Scholar 

  156. S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology. Sci. Technol. Adv. Mater. 10(6), 065002 (2009)

    Article  CAS  Google Scholar 

  157. A. Pauly, M. Dubois, K. Guerin, A. Hamwi, J. Brunet, C. Varenne, B. Lauron, Use of carbon nanomaterials as a filtration material impermeable to ozone. WO 2010000956, 2010, 20 pp

    Google Scholar 

  158. R. Majidi, Adsorption of ternary mixture of noble gases on carbon nanocone: molecular dynamics simulation. Nanosci. Nanotechnol. Lett. 5(7), 750–753 (2013)

    Article  CAS  Google Scholar 

  159. S.A. Aal, A.S. Shalabi, K.A. Soliman, High capacity hydrogen storage in Ni decorated carbon nanocone: a first-principles study. J. Quan. Inf. Sci 5, 134–149 (2015)

    Google Scholar 

  160. S. Moradi, Deuterium adsorption on Multi Carbon Nano-cone (MNCx, X=2-7) including BN Nano-cone: a model for D2 storage. Orient. J. Chem. 31(3), 1355–1364 (2015)

    Article  CAS  Google Scholar 

  161. O.O. Adisa, B.J. Cox, J.M. Hill, Open carbon nanocones as candidates for gas storage. J. Phys. Chem. C 115, 24528–24533 (2011)

    Article  CAS  Google Scholar 

  162. M.-L. Li, F. Lin, Y. Chen, Study on the mechanical properties of carbon nanocones using molecular dynamics simulation. Acta Phys. Sin. 62(1), 016102 (2013)

    Google Scholar 

  163. E. Vessally, F. Behmagham, B. Massoumi, A. Hosseinian, L. Edjlali, Carbon nanocone as an electronic sensor for HCl gas: quantum chemical analysis. Vacuum 134, 40–47 (2016)

    Article  CAS  Google Scholar 

  164. M.T. Baei, A. Ahmadi Peyghan, Z. Bagheri, Carbon nanocone as an ammonia sensor: DFT studies. Struct. Chem. 24, 1099–1103 (2013)

    Article  CAS  Google Scholar 

  165. L.B. Sheridana, D.K. Hensley, N.V. Lavrik, et al., Growth and electrochemical characterization of carbon nanospike thin film electrodes. J. Electrochem. Soc. 161(9), H558–H563 (2014)

    Article  CAS  Google Scholar 

  166. A.G. Zestos, C. Yang, C.B. Jacobs, D. Hensley, B.J. Venton, Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst 140, 7283–7292 (2015)

    Article  CAS  Google Scholar 

  167. A.S. Shanta, K.A. Al Mamun, S.K. Islam, N. McFarlane, Carbon nanotubes, nanofibers and nanospikes for electrochemical sensing: a review. Int. J. High Speed Electron. Syst. 26(3), 1740008, 12 pp (2017)

    Article  CAS  Google Scholar 

  168. Y. Song, R. Peng, D.K. Hensley, et al., High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016)

    Article  CAS  Google Scholar 

  169. J. Zhou, Nanowicking: multi-scale flow interaction with nanofabric structures, Ph.D. Thesis, California Institute of Technology, 2005, 129 pp

    Google Scholar 

  170. T. Ichihashi, J.-i. Fujita, M. Ishida, Y. Ochiai, In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles. Phys. Rev. Lett. 92(21), 215702, 4 pp (2004)

    Article  CAS  Google Scholar 

  171. K. Sai Krishna, M. Eswaramoorthy, Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 433, 327–330 (2007)

    Article  CAS  Google Scholar 

  172. C. Pozrikidis, Structure of carbon nanorings. Comput. Mater. Sci. 43, 943–950 (2008)

    Article  CAS  Google Scholar 

  173. H. Ding, J.P. Maier, Electronic structures of one-dimension carbon nano wires and rings. J. Phys. Conf. Ser. 61, 252–256 (2007)

    Article  CAS  Google Scholar 

  174. S.G. dos Santos, J. Mendes Filho, V.N. Freire, E.W.S. Caetano, E.L. Albuquerque, Carbon-based nanorings sliding along inner coaxial nanotubes: Mobius topology effects in damping gigahertz oscillations. J. Appl. Phys. 116, 124311, 5 pp (2014)

    Article  CAS  Google Scholar 

  175. E.G. Fedorov, N.N. Yanyushkina, M.B. Belonenko, Terahertz radiation from carbon nanorings in external collinear constant and varying electric fields. Tech. Phys. 58(4), 584–588 (2013)

    Article  CAS  Google Scholar 

  176. G. Shi, J. Zhang, Y. He, S. Ju, D. Jiang, Thermal conductivity of carbon nanoring linked graphene sheets: a molecular dynamics investigation. Chin. Phys. B 26(10), 106502, 6 pp (2017)

    Article  CAS  Google Scholar 

  177. K. Yin Cheung, S. Yang, Q. Miao, From tetrabenzoheptafulvalene to sp2 carbon nano-rings. Org. Chem. Front. 4, 699–703 (2017)

    Article  CAS  Google Scholar 

  178. B.M. Wong, Optoelectronic properties of carbon nanorings: excitonic effects from time-dependent density functional theory. J. Phys. Chem. C 113, 21921–21927 (2009)

    Article  CAS  Google Scholar 

  179. H. Omachi, Y. Segawa, K. Itami, Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45(8), 1378–1389 (2012)

    Article  CAS  Google Scholar 

  180. R. Franklin-Mergarejo, D. Ondarse Alvarez, S. Tretiak, S. Fernandez-Alberti, Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics. Sci. Rep. 6, 31253, 11 pp (2016)

    Article  CAS  Google Scholar 

  181. T. Kawase, M. Oda, Complexation of carbon nanorings with fullerenes. Pure Appl. Chem. 78(4), 831–839 (2006)

    Article  CAS  Google Scholar 

  182. K. Miki, T. Matsushita, Y. Inoue, et al., Electron-rich carbon nanorings as macrocyclic hosts for fullerenes. Chem. Commun. 49, 9092–9094 (2013)

    Article  CAS  Google Scholar 

  183. T. Kawase, K. Tanaka, Y. Seirai, N. Shiono, M. Oda, Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew. Chem. Int. Ed. 42, 5597–5600 (2003)

    Article  CAS  Google Scholar 

  184. N. Chen, M.T. Lusk, A.C.T. van Duin, W.A. Goddard III, Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 72, 085416 (2005)

    Article  CAS  Google Scholar 

  185. V. Alamian, A. Bahrami, B. Edalatzade, PI polynomial of V-phenylenic nanotubes and nanotori. Int. J. Mol. Sci. 9, 229–234 (2008)

    Article  CAS  Google Scholar 

  186. Y. Chel Kwun, M. Munir, W. Nazeer, S. Rafique, S. Min Kang, M-polynomials and topological indices of V-phenylenic nanotubes and nanotori. Sci. Rep. 7, 8756, 9 pp (2016)

    Article  CAS  Google Scholar 

  187. A.T. Balaban, D.J. Klein, Claromatic carbon nanostructures. J. Phys. Chem. C 113, 19123–19133 (2009)

    Article  CAS  Google Scholar 

  188. J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Fullerene ‘crop circles’. Nature 385, 780–781 (1997)

    Article  CAS  Google Scholar 

  189. T.A. Hilder, J.M. Hill, Orbiting atoms and C60 fullerenes inside carbon nanotori. J. Appl. Phys. 101, 064319 (2007)

    Article  CAS  Google Scholar 

  190. P.C. Chuang, J. Guan, D. Witalka, et al., Relative stability and local curvature analysis in carbon nanotori. Phys. Rev. B 91, 165433 (2015)

    Article  CAS  Google Scholar 

  191. B.J. Cox, J.M. Hill, New carbon molecules in the form of elbow-connected nanotori. J. Phys. Chem. C 111, 10855–10860 (2007)

    Article  CAS  Google Scholar 

  192. F. Koorepazan-Moftakhar, A. RezaAshrafi, O. Ori, M.V. Putz, Geometry and topology of nanotubes and nanotori, in Exotic Properties of Carbon Nanomatter, Carbon Materials: Chemistry and Physics, ed. by M. V. Putz, O. Ori (Eds), (Springer, Dordrecht, 2015), pp. 131–152

    Google Scholar 

  193. S. Madani, A.R. Ashrafi, The energies of (3,6)-fullerenes and nanotori. Appl. Math. Lett. 25(12), 2365–2368 (2012)

    Article  Google Scholar 

  194. C.P. Liu, J.W. Ding, Electronic structure of carbon nanotori: the roles of curvature, hybridization, and disorder. J. Phys. Condens. Matter 18, 4077–4084 (2006)

    Article  CAS  Google Scholar 

  195. C.P. Liu, Zeeman effect on the electronic structure of carbon nanotori in a strong magnetic field. Int. J. Mod. Phys. B 22(27), 4845–4852 (2008)

    Article  CAS  Google Scholar 

  196. Y.Y. Chou, G.-Y. Guo, Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes. J. Appl. Phys. 96(4), 2249–2253 (2004)

    Article  CAS  Google Scholar 

  197. J.A. Rodriguez-Manzo, F. Lopez-Urias, M. Terrones, H. Terrones, Magnetism in corrugated carbon nanotori: the importance of symmetry, defects, and negative curvature. Nano Lett. 4(11), 2179–2183 (2004)

    Article  CAS  Google Scholar 

  198. L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88(12), 217206, 4 pp (2002)

    Article  CAS  Google Scholar 

  199. E. Taşci, E. Yazgan, O.B. Malcıoğlu, Ş. Erkoç, Stability of carbon nanotori under heat treatment: molecular-dynamics simulations. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 147–154 (2005)

    Article  CAS  Google Scholar 

  200. M. Tonigold, J. Hitzbleck, S. Bahnmueller, G. Langstein, D. Volkmer, Copper (II) Nanoballs as monomers for polyurethane coatings: synthesis, urethane derivatization and kinetic stability. Dalton Trans. (8), 1363–1371 (2009)

    Google Scholar 

  201. S.E. Iyuke, T.A. Mamvura, K. Liu, V. Sibanda, M. Meyyappan, V.K. Varadan, Process synthesis and optimization for the production of carbon nanostructures. Nanotechnology 20(37), 375602/1–375602/10 (2009)

    Article  CAS  Google Scholar 

  202. S. Lee, J. Hong, J.H. Koo, et al., Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl. Mater. Interfaces 5(7), 2432–2437 (2013)

    Article  CAS  Google Scholar 

  203. K.S. Chetna, A. Kapoor. Effect of annealing on structural and optical properties of graphene nanoballs. in: Recent Trends in Materials and Devices, ed by V. Jain, S. Rattan, A. Verma. Springer Proceedings in Physics (Springer, New York, 2017), vol. 178

    Google Scholar 

  204. N. Kumar, A. Shukla, J. Singh, M.K. Patra, P. Ghosal, S.R. Vadera, Simple route for synthesis of multilayer graphene nanoballs by flame combustion of edible oil. Graphene 1(1), 63–67 (2013)

    Article  Google Scholar 

  205. T. Das, B.K. Saikia, B.P. Baruah, Formation of carbon nano-balls and carbon nano-tubes from northeast Indian Tertiary coal: Value added products from low grade coal. Gondwana Res. 31, 295–304 (2016)

    Article  CAS  Google Scholar 

  206. Y. Xie, Q. Huang, B. Huang, X. Xie, Low temperature synthesis of high quality carbon nanospheres through the chemical reactions between calcium carbide and oxalic acid. Mater. Chem. Phys. 124(1), 482–487 (2010)

    Article  CAS  Google Scholar 

  207. D. Wei, Y. Zhang, J. Fu, Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles. Beilstein J. Nanotechnol. 8, 1897–1908 (2017)

    Article  CAS  Google Scholar 

  208. B. Liu, L. Jin, H. Zheng, H. Yao, Y. Wu, A. Lopes, J. He, Ultrafine co-based nanoparticle@mesoporous carbon nanospheres toward high-performance supercapacitors. ACS Appl. Mater. Interfaces 9(2), 1746–1758 (2017)

    Article  CAS  Google Scholar 

  209. F. Ghaemi, L. Chuah Abdullah, P. Tahir, Core/shell structure of Ni/NiO encapsulated in carbon nanosphere coated with few- and multi-layered graphene: synthesis, mechanism and application. Polymers 8, 381 (2016)

    Article  CAS  Google Scholar 

  210. Y. Hao, S. Wang, Q. Sun, L. Shi, A.-H. Lu, Uniformly dispersed Pd nanoparticles on nitrogen-doped carbon nanospheres for aerobic benzyl alcohol oxidation. Chin. J. Catal. 36, 612–619 (2015)

    Article  CAS  Google Scholar 

  211. Y. Yang, M. Qiu, L. Liu, D. Su, Y. Pi, G. Yan, Nitrogen-doped hollow carbon nanospheres derived from dopamine as high-performance anode materials for sodium-ion batteries. NANO: Brief Rep. Rev. 11(11), 1650124, 9 pp (2016)

    Article  CAS  Google Scholar 

  212. W. Armstrong, B. Sapkota, S.R. Mishra, Silver decorated carbon nanospheres as effective visible light photocatalyst, in MRS Proceedings, 2013, Volume 1509, mrsf12-1509-cc09-38

    Google Scholar 

  213. L.P. Bakos, N. Justh, K. Hernádi, et al., Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition. J. Phys. Conf. Ser. 764, 012005 (2016)

    Article  CAS  Google Scholar 

  214. W. Niu, L. Li, X. Liu, et al., One-pot synthesis of graphene/carbon nanospheres/graphene sandwich supported Pt3Ni nanoparticles with enhanced electrocatalytic activity in methanol oxidation. Int. J. Hydrog. Energy 40, 5106–5114 (2015)

    Article  CAS  Google Scholar 

  215. P. Karna, M. Ghimire, S. Mishra, S. Karna, Synthesis and characterization of carbon nanospheres. Open Access Library Journal 4, e3619 (2017)

    Google Scholar 

  216. A.N. Mohan, B. Manoj, Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int. J. Electrochem. Sci. 7, 9537–9549 (2012)

    CAS  Google Scholar 

  217. M. Ibrahim Mohammed, R. Ismaeel Ibrahim, L. Hussein Mahmoud, M. Abdulahad Zablouk, N. Manweel, A. Mahmoud, Characteristics of carbon nanospheres prepared from locally deoiled asphalt. Adv. Mater. Sci. Eng. 2013, 356769, 5 pp (2013)

    Article  CAS  Google Scholar 

  218. H. Kristianto, C.D. Putra, A.A. Arie, M. Halim, J.K. Lee, Synthesis and characterization of carbon nanospheres using cooking palm oil as natural precursors onto activated carbon support. Procedia Chem. 16, 328–333 (2015)

    Article  CAS  Google Scholar 

  219. D. Guo, X. Chen, H. Wei, et al., Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. J. Mater. Chem. A 5, 6245–6256 (2017)

    Article  CAS  Google Scholar 

  220. L. Zhang, P. Wang, W. Zheng, X. Jiang, Hollow carbon nanospheres for targeted delivery of chemotherapeutics in breast cancer therapy. J. Mater. Chem. B 5, 6601–6607 (2017)

    Article  CAS  Google Scholar 

  221. Y.-W. Jiang, G. Gao, X. Zhang, H.-R. Jia, F.-G. Wu, Antimicrobial carbon nanospheres. Nanoscale 9, 15786–15795 (2017)

    Article  CAS  Google Scholar 

  222. R. Vié, E. Drahi, O. Baudino, S. Blayac, S. Berthon-Fabry, Synthesis of carbon nanospheres for the development of inkjetprinted resistive layers and sensors. Flex. Print. Electron 1, 015003 (2016)

    Article  CAS  Google Scholar 

  223. H. Zhao, F. Zhang, S. Zhang, et al., Scalable synthesis of Sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 11(4), 1822–1833 (2018)

    Article  CAS  Google Scholar 

  224. J. Saini, M. Kumar, K. Anshu, S. Singh, S. Singh Kamal, G. Kaur, S.L. Harikumar, Future prospectives of nano onions: a review. Int. J. Curr. Med. Pharma. Res. 2(3), 222–234 (2016)

    Google Scholar 

  225. J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)

    Article  CAS  Google Scholar 

  226. A.N. Papathanassiou, M.E. Plonska-Brzezinska, O. Mykhailiv, L. Echegoyen, I. Sakellis, Combined high permittivity and high electrical conductivity of carbon nano-onion/polyaniline composites. Synth. Met. 209, 583–587 (2015)

    Article  CAS  Google Scholar 

  227. D.M. Bobrowska, K. Brzezinski, L. Echegoyen, M.E. Plonska-Brzezinska, A new perspective on carbon nano-onion/nickel hydroxide/oxide composites: Physicochemical properties and application in hybrid electrochemical systems. Fullerenes, Nanotubes, Carbon Nanostruct. 25(3), 193–203 (2017)

    Article  CAS  Google Scholar 

  228. J. Bartelmess, M. Frasconi, P.B. Balakrishnan, A. Signorellia, L. Echegoyen, T. Pellegrino, S. Giordani, Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging. RSC Adv. 5, 50253–50258 (2015)

    Article  CAS  Google Scholar 

  229. D.M. Bobrowska, J. Czyrko, K. Brzezinski, L. Echegoyen, M.E. Plonska-Brzezinska, Carbon nano-onion composites: physicochemical characteristics and biological activity. Fullerenes, Nanotubes, Carbon Nanostruct. 25(3), 185–192 (2017)

    Article  CAS  Google Scholar 

  230. M.E. Plonska-Brzezinska, A. Molina-Ontori, L. Echegoyen, Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates. Carbon 67, 304–317 (2014)

    Article  CAS  Google Scholar 

  231. L. Zhou, C. Gao, D. Zhu, et al., Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chem. Eur. J. 15, 1389–1396 (2009)

    Article  CAS  Google Scholar 

  232. S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen, D.F. O'Shea, NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. J. Mater. Chem. B 2, 7459–7463 (2014)

    Article  CAS  Google Scholar 

  233. C.T. Cioffi, A. Palkar, F. Melin, et al., Carbon nano-onion–ferrocene donor–acceptor system:synthesis, characterization and properties. Chem. Eur. J. 15, 4419–4427 (2009)

    Article  CAS  Google Scholar 

  234. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)

    Article  CAS  Google Scholar 

  235. J.K. McDonough, A.I. Frolov, V. Presser, J. Niu, C.H. Miller, T. Ubieto, M.V. Federov, Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 50(9), 3298–3309 (2012)

    Article  CAS  Google Scholar 

  236. J.K. McDonough, Y. Gogotsi, Carbon onions: synthesis and electrochemical applications. Electrochem. Soc. Interface 22(3), 61–66 (2013)

    Article  CAS  Google Scholar 

  237. P. Bystrzejewski, M.H. Rummeli, T. Gemming, H. Lange, A. Huczco, Catalyst-free synthesis of onion-like carbon nanoparticles. New Carbon Mater. 25(1), 1–8 (2010)

    Article  CAS  Google Scholar 

  238. Y. Zheng, P. Zhu, Carbon nano-onions: large-scale preparation, functionalization and their application as anode material for rechargeable lithium ion batteries. RSC Adv. 6, 92285–92298 (2016)

    Article  CAS  Google Scholar 

  239. T. Garcia-Martin, P. Rincon-Arevalo, G. Campos-Martin, Method to obtain carbon nano-onions by pyrolisys of propane. Cent. Eur. J. Phys. 11(11), 1548–1558 (2013)

    CAS  Google Scholar 

  240. W.-k. Zhang, J.-j. Fu, J. Chang, M. Zhang, Y.-q. Yang, L.-z. Gao, Fabrication and purification of carbon nano onions. New Carbon Mater. 29(5), 398–403 (2014)

    Google Scholar 

  241. F.-D. Han, B. Yao, Y.-J. Bai, Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries. J. Phys. Chem. C 115, 8923–8927 (2011)

    Article  CAS  Google Scholar 

  242. C. Zhang, J. Li, C. Shi, C. He, E. Liu, N. Zhao, Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties. Nano Res. 9(4), 1159–1172 (2016)

    Article  CAS  Google Scholar 

  243. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga, Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys. 92(5), 2783–2788 (2002)

    Article  CAS  Google Scholar 

  244. O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, J. Jiang, Preparation of carbon nano-onions by the low-temperature unfolding of MWCNTs via interaction with theraphthal. RSC Adv. 5, 57764–57770 (2015)

    Article  CAS  Google Scholar 

  245. O.L. Kaliya, E.A. Luk’yanets, On the article about the component composition of Theraphthal preparation. Pharm. Chem. J. 43(10), 587–587 (2009)

    Article  CAS  Google Scholar 

  246. M.S. Goizman, E.V. Degterev, K.F. Turchin, A.P. Arzamastsev, Quality control of theraphthal production. 1. Chemical composition. Pharm. Chem. J. 41(12), 670–675 (2007)

    Article  CAS  Google Scholar 

  247. Patent of Russian Federation 2106146 (1995)

    Google Scholar 

  248. M.E. Volpin, Agent for suppressing tumor growth, U.S. Patent 6,004,953, 1999

    Google Scholar 

  249. Patent of Japan 3672928, 2005

    Google Scholar 

  250. Canada application for a patent 2200220, 1996

    Google Scholar 

  251. Antitumor composition comprising ascorbic acid and metal complexes of (na)phthalocyanines. EP 0786253 (1997)

    Google Scholar 

  252. A.L. Nikolaev, A.V. Gopin, V.E. Bozhevolnov, S.E. Mazina, A.V. Severin, V.N. Rudin, N.V. Andronova, E.M. Treschalina, O.L. Kaliya, L.I. Solovyeva, E.A. Lukyanets, Sonodynamic therapy of cancer. A comprehensive experimental study. Russ. Chem. Bull. 63(5), 1 (2014)

    Article  CAS  Google Scholar 

  253. O.V. Kharissova, J. Rodríguez, B.I. Kharisov, Non-standard ROS-generating combination “theraphthal–ascorbic acid” in low-temperature transformations of carbon allotropes. Chem. Pap. (2018). https://doi.org/10.1007/s11696-018-0571-y

  254. Y. Yao, X. Wang, J. Guo, X. Yang, B. Xu, Tribological property of onion-like fullerenes as lubricant additive. Mater. Lett. 62(16), 2524–2527 (2008)

    Article  CAS  Google Scholar 

  255. S. Erkoc, Stability of carbon nanoonion C20@C60@C240: molecular dynamics simulations. Nano Lett. 2(3), 215–217 (2002)

    Article  CAS  Google Scholar 

  256. M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, et al., The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon 49(15), 5079–5089 (2011)

    Article  CAS  Google Scholar 

  257. Y. Gao, Y. Shen Zhou, M. Qian, et al., Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52–58 (2013)

    Article  CAS  Google Scholar 

  258. Y.A. Goh, X. Chen, F. Md Yasin, et al., Shear flow assisted decoration of carbon nano-onions with platinum nanoparticles. Chem. Commun. 49, 5171–5173 (2013)

    Article  CAS  Google Scholar 

  259. O. Mykhailiv, K. Brzezinski, B. Sulikowski, et al., Boron-doped polygonal carbon nano-onions: synthesis and applications in electrochemical energy storage. Chem. Eur. J. 23, 7132–7141 (2017)

    Article  CAS  Google Scholar 

  260. E.Y. Choi, C.K. Kim, Fabrication of nitrogendoped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep. 7, 4178 (2017)

    Article  CAS  Google Scholar 

  261. Y. Liu, R.L.V. Wal, V.N. Khabashesku, Functionalization of carbon nano-onions by direct fluorination. Chem. Mater. 19, 778–786 (2007)

    Article  CAS  Google Scholar 

  262. J. Luszczyn, M.E. Plonska-Brzezinska, A. Palkar, A.T. Dubis, A. Simionescu, D.T. Simionescu, B. Kalska-Szostko, K. Winkler, L. Echegoyen, “Small” noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chem. Eur. J. 16, 4870–4880 (2010)

    Article  CAS  Google Scholar 

  263. A.M. Panich, V.Y. Osipov, K. Takai, Diamagnetism of carbon onions probed by NMR of adsorbed water. Carbon 82, 608–610 (2015)

    Article  Google Scholar 

  264. A.M. Panich, V.Y. Osipov, K. Takai, Diamagnetism of carbon onions probed by NMR of adsorbed water. New Carbon Mater. 29(5), 392–397 (2014)

    Article  Google Scholar 

  265. H.G. Baldoví, J.R. Herance, V.M. Víctor, M. Alvaro, H. Garcia, Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings. Nanoscale 7, 12484–12491 (2015)

    Article  CAS  Google Scholar 

  266. G. Moussa, C. Matei Ghimbeu, P.-L. Taberna, P. Simon, C. Vix-Guterl, Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon 105, 628–637 (2016)

    Article  CAS  Google Scholar 

  267. E.W. Bucholz, S.R. Phillpot, S.B. Sinnott, Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput. Mater. Sci. 54, 91–96 (2012)

    Article  CAS  Google Scholar 

  268. V. Marchesano, A. Ambrosone, J. Bartelmess, F. Strisciante, A. Tino, L. Echegoyen, C. Tortiglione, S. Giordani, Impact of carbon nano-onions on hydra vulgaris as a model organism for nanoecotoxicology. Nano 5, 1331–1350 (2015)

    CAS  Google Scholar 

  269. M. Frasconi, V. Maffeis, J. Bartelmess, L. Echegoyen, S. Giordani, Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc. 3, 044005 (2015)

    Article  CAS  Google Scholar 

  270. A. Camisasca, S. Giordani, Carbon nano-onions in biomedical applications: promising theranostic agents. Inorg. Chim. Acta 468, 67 (2017)

    Article  CAS  Google Scholar 

  271. M.-S. Wang, D. Golberg, Y. Bando, Carbon “onions” as point electron sources. ACS Nano 4(8), 4396–4402 (2010)

    Article  CAS  Google Scholar 

  272. A. Pramanik, S. Biswas, A.K. Kole, C.S. Tiwary, R.N. Krishnarajd, P. Kumbhakar, Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting applications and unleashing its nonlinear optical properties. RSC Adv. 6, 99060–99071 (2016)

    Article  CAS  Google Scholar 

  273. P.S. Parasuraman, H.-C. Tsai, T. Imae, In-situ hydrothermal synthesis of carbon nanorice using Nafion as a template. Carbon 77, 660–666 (2014)

    Article  CAS  Google Scholar 

  274. Q. Wu, L. Yang, X. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50(2), 435–444 (2017)

    Article  CAS  Google Scholar 

  275. K. Matsui, Y. Segawa, K. Itami, All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure. J. Am. Chem. Soc. 136(46), 16452–16458 (2014)

    Article  CAS  Google Scholar 

  276. Y. Li, C. Zhou, X. Xie, G. Shi, L. Qu, Spontaneous, catalyst-free formation of nitrogen-doped graphitic carbon nanocages. Carbon 48(14), 4190–4196 (2010)

    Article  CAS  Google Scholar 

  277. Y. Tan, C. Xu, G. Chen, et al., Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 5(6), 2241–2248 (2013)

    Article  CAS  Google Scholar 

  278. C.-K. Tsai, H.Y. Kang, C.-I. Hong, et al., Preparation of hollow spherical carbon nanocages. J. Nanopart. Res. 14, 1315 (2012)

    Article  CAS  Google Scholar 

  279. R. Zhang, M. Hummelgard, H. Olin, Carbon nanocages grown by gold templating. Carbon 48, 424–430 (2010)

    Article  CAS  Google Scholar 

  280. S. Xiang, Y. Shi, K. Zhang, et al., Design and synthesis of dodecahedral carbon nanocages incorporated with Fe3O4. RSC Adv. 7, 13257–13262 (2017)

    Article  CAS  Google Scholar 

  281. E. Petala, Y. Georgiou, V. Kostas, et al., Magnetic carbon nanocages: an advanced architecture with surface- and morphology-enhanced removal capacity for arsenites. ACS Sustain. Chem. Eng. 5(7), 5782–5792 (2017)

    Article  CAS  Google Scholar 

  282. H. Qin, Y. Huang, S. Liu, et al., Synthesis and properties of magnetic carbon nanocages particles for dye removal. J. Nanomater. 2015, 604201, 8 pp (2015)

    Google Scholar 

  283. J.T. Li, A mild method prepared carboxy carbon nanocage. Adv. Mater. Res. 560–561, 742–746 (2012)

    Google Scholar 

  284. S. Liu, Z. Wang, S. Zhou, et al., Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29(31), 1700874 (2017)

    Article  CAS  Google Scholar 

  285. Y. Jiang, L. Yang, T. Sun, et al., Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015)

    Article  CAS  Google Scholar 

  286. Z. Lyu, L. Yang, D. Xu, et al., Hierarchical carbon nanocages as high-rate anodes for Li-and Na-ion batteries. Nano Res 8(11), 3535–3543 (2015)

    Article  CAS  Google Scholar 

  287. M.J. Armstrong, D.M. Burke, et al., Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1, 12568–12578 (2013)

    Article  CAS  Google Scholar 

  288. A. Vinu, M. Miyahara, T. Mori, K. Ariga, Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J. Porous. Mater. 13(3–4), 379–383 (2006)

    Article  CAS  Google Scholar 

  289. K.K.R. Datta, A. Vinu, S. Mandal, et al., Carbon nanocage: super-adsorber of intercalators for DNA protection. J. Nanosci. Nanotechnol. 11(4), 3084–3090 (2011)

    Article  CAS  Google Scholar 

  290. C.X. Guo, Z.M. Sheng, Y.Q. Shen, Z.L. Dong, C.M. Li, Thin-walled graphitic nanocages as a unique platform for amperometric glucose biosensor. ACS Appl. Mater. Interfaces 2(9), 2481–2484 (2010)

    Article  CAS  Google Scholar 

  291. M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ 2, 218–245 (2017)

    Article  Google Scholar 

  292. H. Zhang, X. Zhang, X. Sun, Y. Ma, Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide. Sci. Rep. 3, 3534 (2013)

    Article  Google Scholar 

  293. L. Cao, Z.-h. Li, Y. Gu, Rational design of N-doped carbon nanobox-supported Fe/Fe2N/Fe3C nanoparticles as efficient oxygen reduction catalysts for Zn–air batteries. J. Mater. Chem. A 5, 11340–11347 (2017)

    Article  CAS  Google Scholar 

  294. J. Xiang, T. Song, One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem. Commun. 53, 10820–10823 (2017)

    Article  CAS  Google Scholar 

  295. H. Hu, J. Zhang, B. Guan, X.W. (David) Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. 55(33), 9514–9518 (2016)

    Article  CAS  Google Scholar 

  296. M. Zheng, Y. Liu, S. Zhao, W. He, Y. Xiao, D. Yuan, Simple shape-controlled synthesis of carbon hollow structures. Inorg. Chem. 49(19), 8674–8683 (2010)

    Article  CAS  Google Scholar 

  297. B. Quan, G.-E. Nam, H. Jae Choi, Y. Piao, Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells. Chem. Asian J. 8(4), 765–770 (2013)

    Article  CAS  Google Scholar 

  298. U. Narkiewicz, M. Podsiadly, R. Jedrzejewski, I. Pelech, Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials. Appl. Catal. A Gen. 384(1–2), 27–35 (2010)

    Article  CAS  Google Scholar 

  299. X.G. Liu, Z.Q. Ou, D.Y. Geng, Z. Han, H. Wang, B. Li, E. Brueck, Z.D. Zhang, Enhanced absorption bandwidth in carbon-coated supermalloy FeNiMo nanocapsules for a thin absorb thickness. J. Alloys Compd. 506(2), 826–830 (2010)

    Article  CAS  Google Scholar 

  300. H. Kuratani, Y. Fujiwara, K. Maeda, T. Kobayashi, M. Jimbo, Synthesis of carbon nanocapsules containing Fe produced by discharge in ethanol. J. Magn. Soc. Jpn. 37(3–2), 206–209 (2013)

    Article  CAS  Google Scholar 

  301. Y. Liu, J. Su, Synthesis and characterization of MgO-filled rectangular carbon nanocapsules. Adv. Mater. Res. 785-786, 444–448 (2013)

    Article  CAS  Google Scholar 

  302. P. Wu, N. Du, H. Zhang, J. Yu, D. Yang, Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated iron and iron oxides: magnetic properties and reversible lithium storage. J. Phys. Chem. C 115, 3612–3620 (2011)

    Article  CAS  Google Scholar 

  303. S. Kim, R. Sergiienko, E. Shibata, T. Nakamura, Iron-included carbon nanocapsules coated with biocompatible poly(ethylene glycol) shells. Mater. Chem. Phys. 122, 164–168 (2010)

    Article  CAS  Google Scholar 

  304. T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 613746, 6 (2012)

    Google Scholar 

  305. D. Han, G. Song, B. Liu, H. Yan, Core–shell-structured nickel ferrite/onion-like carbon nanocapsules: an anode material with enhanced electrochemical performance for lithium-ion batteries. RSC Adv. 5, 42875–42880 (2015)

    Article  CAS  Google Scholar 

  306. Y. Suna, C. Feng, X. Liu, S. Wing Orc, C. Jin, Synthesis, characterization and microwave absorption of carbon-coated Cu nanocapsules. Mater. Res. 17(2), 477–482 (2014)

    Article  CAS  Google Scholar 

  307. E. Hu, J. Ning, B. He, et al., Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. J. Mater. Chem. A 5, 2271–2279 (2017)

    Article  CAS  Google Scholar 

  308. H. Wang, C. Chen, Y. Zhang, et al., In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion. Nat. Commun. 6, 7181 (2015)

    Article  CAS  Google Scholar 

  309. A.C.L. Tang, G.-L. Hwang, S.-J. Tsai, et al., Biosafety of non-surface modified carbon nanocapsules as a potential alternative to carbon nanotubes for drug delivery purposes. PLoS One 7(3), e32893 (2012)

    Article  CAS  Google Scholar 

  310. Y.-F. Lan, S.-C. Cheng, Dispersion of carbon nanocapsules by using highly aspect-ratio clays. Appl. Phys. Lett. 100, 153109 (2012)

    Article  CAS  Google Scholar 

  311. O.V. Kharissova, B.I. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, New York, 2017), 250 pp

    Book  Google Scholar 

  312. Y. Hayashi, N. Takada, W. Diono, H. Kanda, M. Goto, One-step synthesis of water–dispersible carbon nanocapsules by pulsed arc discharge over aqueous solution under pressurized argon. Res. Chem. Intermed. 43, 4201–4211 (2017)

    Article  CAS  Google Scholar 

  313. A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33(5), 1455–1461 (2012)

    Article  CAS  Google Scholar 

  314. H. Ge, P.J. Riss, V. Mirabello, et al., Behavior of supramolecular assemblies of radiometal-filled and fluorescent carbon nanocapsules in vitro and in vivo. Chem 3, 437–460 (2017)

    Article  CAS  Google Scholar 

  315. N. Mittal, R. Kumar, G. Mishra, D. Deva, A. Sharma, Mesoporous carbon nanocapsules based coatings with multifunctionalities. Adv. Mater. Interfaces 3(10), 1500708 (2016)

    Article  CAS  Google Scholar 

  316. H.-S. Chien, C. Wang, Effects of temperature and carbon nanocapsules (CNCs) on the production of Poly(D,L-lactic acid) (PLA) nonwoven nanofibre mat. Fibres Text. East. Eur 97(1), 72–77 (2013)

    Google Scholar 

  317. P. Gentile, T. David, F. Dhalluin, D. Buttard, N. Pauc, M. Den Hertog, P. Ferret, T. Baron, The growth of small diameter silicon nanowires to nanotrees. Nanotechnology 19(12), 125608/1–125608/5 (2008)

    Article  CAS  Google Scholar 

  318. http://www.ifn.upr.edu/people/17-luis-fonseca

  319. F. Sola, O. Resto, A. Biaggi-Labiosa, L.F. Fonseca, Growth and characterization of branched carbon nanostructures arrays in nano-patterned surfaces from porous silicon substrates. Micron 40, 80–84 (2009)

    Article  CAS  Google Scholar 

  320. Z. Yao, X. Zhu, X. Li, Y. Xie, Synthesis of novel Y-junction hollow carbon nanotrees. Carbon 45(7), 1566–1570 (2007)

    Article  CAS  Google Scholar 

  321. G. Liu, Y. Zhao, K. Zheng, Z. Liu, W. Ma, Y. Ren, S. Xie, L. Sun, Coulomb explosion: a novel approach to separate single-walled carbon nanotubes from their bundle. Nano Lett. 9(1), 239–244 (2009)

    Article  CAS  Google Scholar 

  322. M. Haba, Fuel cell using carbon-metal nanotree electrocatalyst. 2006, JP 2006294493 (11 pp)

    Google Scholar 

  323. Z. He, J.-L. Maurice, C. Seok Lee, C.S. Cojocaru, D. Pribat, Growth mechanisms of carbon nanostructures with branched carbon nanofibers synthesized by plasma-enhanced chemical vapour deposition. CrystEngComm 16, 2990–2995 (2014)

    Article  CAS  Google Scholar 

  324. F. Sola, O. Resto, A.M. Biaggi-Labiosa, L.F. Fonseca, Electron-beam induced growth of silica nanowires and silica/carbon heterostructures. Mater. Res. Soc. Symp. Proc. (2007), 1017E (Low-Dimensional Materials--Synthesis, Assembly, Property Scaling, and Modeling), Paper #: 1017-DD12-31

    Google Scholar 

  325. F. Sola, O. Resto, A. Biaggi-Labiosa, L.F. Fonseca, Electron-beam induced growth of silica nanorods and heterostructures in porous silicon. Nanotechnology 18, 405308 (2007)

    Article  CAS  Google Scholar 

  326. L. Chen, C. Xu, R. Du, et al., Rational design of three-dimensional nitrogendoped carbon nanoleaf networks for highperformance oxygen reduction. J. Mater. Chem. A 3, 5617–5627 (2015)

    Article  CAS  Google Scholar 

  327. T.-N. Ye, L.-B. Lv, X.-H. Li, M. Xu, J.-S. Chen, Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem. 126, 7025–7029 (2014)

    Article  Google Scholar 

  328. X. Ma, B. Yuan, Fabrication of carbon nanoflowers by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 255(18), 7846–7850 (2009)

    Article  CAS  Google Scholar 

  329. H. Butt, R. Rajesekharan, Q. Dai, S. Sarfraz, R.V. Kumar, G.A.J. Amaratunga, T.D. Wilkinson, Cylindrical Fresnel lenses based on carbon nanotube forests. Appl. Phys. Lett. 101(24), 243116 (2012)

    Article  CAS  Google Scholar 

  330. T. Saleh, M. Vahdani Moghaddam, M. Sultan Mohamed Ali, M. Dahmardeh, C. Alden Foell, A. Nojeh, K. Takahata, Transforming carbon nanotube forest from darkest absorber to reflective mirror. Appl. Phys. Lett. 101, 061913 (2012)

    Article  CAS  Google Scholar 

  331. H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, L. Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater. Sci. Eng. R. Rep. 70, 63–91 (2010)

    Article  CAS  Google Scholar 

  332. N. Hayashi, S.-I. Honda, K. Tsui, K.-Y. Lee, T. Ikuno, K. Fujimoto, S. Ohkura, M. Katayama, K. Oura, T. Hirao, Highly aligned carbon nanotube arrays fabricated by bias sputtering. Appl. Surf. Sci. 212–213, 393–396 (2003)

    Article  CAS  Google Scholar 

  333. C. Daraio, V.F. Nesterenko, S. Jin, Impact response by a foamlike forest of coiled carbon nanotubes. J. Appl. Phys. 100, 064309, 4 pp (2006)

    Article  CAS  Google Scholar 

  334. Y. Taki, M. Kikuchi, K. Shinohara, A. Tanaka, Selective growth of vertically aligned single-, double-, and triple-walled carbon nanotubes by radiation-heated chemical vapor deposition. Jpn. J. Appl. Phys. 47, 721–724 (2008)

    Article  CAS  Google Scholar 

  335. A.M. Cassell, M. Meyyappan, J. Han, Multilayer film assembly of carbon nanotubes. J. Nanopart. Res. 2(4), 387–389 (2000)

    Article  CAS  Google Scholar 

  336. Q. Zhang, W. Zhou, W. Qian, R. Xiang, J. Huang, D. Wang, F. Wei, Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J. Phys. Chem. C 111, 14638–14643 (2007)

    Article  CAS  Google Scholar 

  337. X. Li, A. Cao, Y.J. Jung, R. Vajtai, P.M. Ajayan, Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett. 5, 1997–2000 (2005)

    Article  CAS  Google Scholar 

  338. S. Huang, L. Dai, A.W.H. Mau, Nanotube “crop circles”. J. Mater. Chem. 9, 1221–1222 (1999)

    Article  CAS  Google Scholar 

  339. C.K. Tan, K.P. Loh, T.T.L. John, Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. Analyst 133, 448–451 (2008)

    Article  CAS  Google Scholar 

  340. S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, D. Zhu, Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J. Phys. Chem. B 106(36), 9274–9276 (2002)

    Article  CAS  Google Scholar 

  341. M.R. Maschmann, Integrated simulation of active carbon nanotube forest growth and mechanical compression. Carbon 86, 26–37 (2015)

    Article  CAS  Google Scholar 

  342. E.G. Rakov, Materials made of carbon nanotubes. The carbon nanotube forest. Russ. Chem. Rev. 82(6), 538–566 (2013)

    Article  CAS  Google Scholar 

  343. M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L'Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett. 5(12), 2394–2398 (2005)

    Article  CAS  Google Scholar 

  344. R. Xiang, G. Luo, Z. Yang, Q. Zhang, W. Qian, F. Wei, Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology 18(41), 415703 (2007)

    Article  CAS  Google Scholar 

  345. Z. Yang, H. Nie, X. Zhou, Z. Yao, S. Huang, X. Chen, Synthesizing a well-aligned carbon nanotube forest with high quality via the nebulized spray pyrolysis method by optimizing ultrasonic frequency. Nano 6, 343–348 (2011)

    Article  CAS  Google Scholar 

  346. C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17(21), 5314–5318 (2006)

    Article  CAS  Google Scholar 

  347. S. Shekhar, P. Stokes, S. Khondaker, Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5(3), 1739–1746 (2011)

    Article  CAS  Google Scholar 

  348. P. Diao, Z. Li, Vertically aligned single-walled carbon nanotubes by chemical assembly – methodology, properties, and applications. Adv. Mater. 22, 1430–1449 (2010)

    Article  CAS  Google Scholar 

  349. C. Soldano, S. Talapatra, S. Kar, Carbon nanotubes and graphene nanoribbons: potentials for nanoscale electrical interconnects. Electronics 2, 280–314 (2013)

    Article  CAS  Google Scholar 

  350. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21, 15872–15884 (2011)

    Article  CAS  Google Scholar 

  351. E.R. Meshot, D.L. Plata, S. Tawfick, Y. Zhang, E.A. Verploegen, A.J. Hart, Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 3(9), 2477–2486 (2009)

    Article  CAS  Google Scholar 

  352. K. Hasegawa, S. Noda, H. Sugime, K. Kakehi, S. Maruyama, Y. Yamaguchi, Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. J. Nanosci. Nanotechnol. 8(11), 6123–6128 (2008)

    Article  CAS  Google Scholar 

  353. J. Olivares, T. Mirea, B. Díaz-Durán, M. Clement, M. De Miguel-Ramos, J. Sangrador, J. De Frutos, E. Iborra, Growth of carbon nanotube forests on metallic thin films. Carbon 90, 9–15 (2015)

    Article  CAS  Google Scholar 

  354. H. Sugime, S. Esconjauregui, L. D'Arsié, J. Yang, A.W. Robertson, R.A. Oliver, S. Bhardwaj, C. Cepek, J. Robertson, Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports. ACS Appl. Mater. Interfaces 7(30), 16819–16827 (2015)

    Article  CAS  Google Scholar 

  355. T. Ohashi, T. Shima, Synthesis of vertically aligned single-walled carbon nanotubes with metallic chirality through facet control of catalysts. Carbon 87(1), 453–461 (2016)

    Google Scholar 

  356. S. Esconjauregui, M. Fouquet, B.C. Bayer, S. Eslava, S. Khachadorian, S. Hofmann, J. Robertson, Manipulation of the catalyst-support interactions for inducing nanotube forest growth. J. Appl. Phys. 109, 044303 (2011)

    Article  CAS  Google Scholar 

  357. C.T. Wirth, C. Zhang, G. Zhong, S. Hofmann, J. Robertson, Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3(11), 3560–3566 (2009)

    Article  CAS  Google Scholar 

  358. M. Bedewy, E.R. Meshot, H. Guo, E.A. Verploegen, W. Lu, A.J. Hart, Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113(48), 20576–20582 (2009)

    Article  CAS  Google Scholar 

  359. R. Siddheswaran, D. Manikandan, R.E. Avila, C.E. Jeyanthi, R.V. Mangalaraja, Formation of carbon nanotube forest over spin-coated Fe2O 3 reduced thin-film by chemical vapor deposition. Fullerenes Nanotubes Carbon Nanostruct. 23(5), 392–398 (2015)

    Article  CAS  Google Scholar 

  360. J. Yang, S. Esconjauregui, A.W. Robertson, Y. Guo, T. Hallam, H. Sugime, G. Zhong, G.S. Duesberg, J. Robertson, Growth of high-density carbon nanotube forests on conductive TiSiN supports. Appl. Phys. Lett. 106(8), 083108 (2015)

    Article  CAS  Google Scholar 

  361. M. Mohsin Hossain, H. Shima, B.-C. Ku, J. Ryang Hahn, Nanoforests composed of ZnO/C core–shell hexagonal nanosheets: fabrication and growth in a sealed thermolysis reactor and optical properties. J. Mater. Sci. 50, 93–103 (2015)

    Article  CAS  Google Scholar 

  362. N. Matsumoto, A. Oshima, S. Sakurai, T. Yamada, M. Yumura, K. Hata, D.N. Futaba, The application of gas dwell time control for rapid single wall carbon nanotube forest synthesis to acetylene feedstock. Nano 5, 1200–1210 (2015)

    CAS  Google Scholar 

  363. J. Huang, Q. Zhang, M. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2, 872–881 (2009)

    Article  CAS  Google Scholar 

  364. M. Zhang, O. O. I. Okoli, H. Hoang Van, Graphene nanoribbons and methods. US Patent 2015/0013896 A1, 2015

    Google Scholar 

  365. S. Santhanagopalan, A. Balram, E. Lucas, F. Marcano, D. Desheng Meng, High voltage electrophoretic deposition of aligned nanoforests for scalable nanomanufacturing of electrochemical energy storage devices. Key Eng. Mater. 507, 67–72 (2012)

    Article  CAS  Google Scholar 

  366. D.S. Jensen, S.S. Kanyal, N. Madaan, M.A. Vail, A.E. Dadson, M.H. Engelhard, M.R. Linford, Multiwalled carbon nanotube forest grown via chemical vapor deposition from iron catalyst nanoparticles, by XPS. Surf. Sci. Spectra 20, 62–67 (2013)

    Article  CAS  Google Scholar 

  367. G. Chen, Y. Seki, H. Kimura, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Sci. Rep. 4, 3804 (2014)

    Article  CAS  Google Scholar 

  368. M. Vahdani Moghaddam, P. Yaghoobi, G.A. Sawatzky, A. Nojeh, Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission. ACS Nano 9(4), 4064–4069 (2015)

    Article  CAS  Google Scholar 

  369. N.J. Ginga, W. Chen, S.K. Sitaraman, Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66, 57–66 (2014)

    Article  CAS  Google Scholar 

  370. J.-W. Jiang, Strain engineering for thermal conductivity of single-walled carbon nanotube forests, Cornell University Library, arXiv:1406.4559

    Google Scholar 

  371. P. Pour Shahid Saeed Abadi, S.B. Hutchens, J.R. Greer, B.A. Cola, S. Graham, Buckling-driven delamination of carbon nanotube forests. Appl. Phys. Lett. 102, 223103 (2013)

    Article  CAS  Google Scholar 

  372. G. Chen, D.N. Futaba, H. Kimura, S. Sakurai, M. Yumura, K. Hata, Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities. ACS Nano 7(11), 10218–10224 (2013)

    Article  CAS  Google Scholar 

  373. P. Joseph, C. Cottin-Bizonne, J.-M. Benoıt, C. Ybert, C. Journet, P. Tabeling, L. Bocquet, Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97, 156104 (2006)

    Article  CAS  Google Scholar 

  374. K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), 1701–1705 (2003)

    Article  CAS  Google Scholar 

  375. R. Kant, M. Birla Singh, Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies. Phys. Rev. E 88, 052303 (2013)

    Article  CAS  Google Scholar 

  376. A. Ozhan Altun, S. Ki Youn, N. Yazdani, T. Bond, H.G. Park, Metal-dielectric-CNT nanowires for femtomolar chemical detection by surface enhanced Raman spectroscopy. Adv. Mater. 25(32), 4377–4377 (2013)

    Article  CAS  Google Scholar 

  377. S. Deng, M. Kurttepeli, D.J. Cott, S. Bals, C. Detavernier, Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination. J. Mater. Chem. A 3(6), 2642–2649 (2015)

    Article  CAS  Google Scholar 

  378. M.P. Down, A.P. Lewis, L. Jiang, J.W. McBride, A nano-indentation study of the contact resistance and resistivity of a bi-layered Au/multi-walled carbon nanotube composite. Appl. Phys. Lett. 106(10), 101911 (2015)

    Article  CAS  Google Scholar 

  379. Y. Yoon, G.S. Lee, K. Yoo, J.-B. Lee, Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 13, 16672–16681 (2013)

    Article  CAS  Google Scholar 

  380. E. Gikunoo, A. Abera, E. Woldesenbet, A novel carbon nanofibers grown on glass microballoons immunosensor: a tool for early diagnosis of malaria. Sensors 14, 14686–14699 (2014)

    Article  CAS  Google Scholar 

  381. P. Sui, D. Duckworth, G. Weaver, Joints comprising carbon nanoforests. US Patent 2015/0204444 A1, 2015

    Google Scholar 

  382. J.H. Taphouse, T.L. Bougher, V. Singh, P.P.S.S. Abadi, S. Graham, B.A. Cola, G.W. Woodruff, Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Nanotechnology 24(10), 105401 (2013)

    Article  CAS  Google Scholar 

  383. D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 3(8), 2121–2128 (2009)

    Article  CAS  Google Scholar 

  384. D.G. Lee, S.J. Park, Y.O. Park, E.I. Ryu, Synthesis of nanostructures by direct growth of carbon nanotubes on micron-sized metal fiber filter and its filtration performance. Hwahak Konghak 45(3), 264–268 (2007)

    CAS  Google Scholar 

  385. S.J. Park, D.G. Lee, Performance improvement of micron-sized fibrous metal filters by direct growth of carbon nanotubes. Carbon 44(10), 1930–1935 (2006)

    Article  CAS  Google Scholar 

  386. T. Ohtani, T. Nishikawa, K. Harada, K. Ikeda, N. Takayama, Novel nanocarbons with a mushroom shape found in glassy carbon powder. J. Alloys Compd. 483(1–2), 491–494 (2009)

    Article  CAS  Google Scholar 

  387. X. Peng, K. Koczkur, A. Chen, Synthesis of well-aligned bamboo-like carbon nanotube arrays from ethanol and acetone. J. Phys. D. Appl. Phys. 41(9), 095409/1–095409/6 (2008)

    Article  CAS  Google Scholar 

  388. B.I. Kharisov, A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2(3), 190–200 (2008)

    Article  CAS  Google Scholar 

  389. H. Heli, A. Rahi, Synthesis and applications of nanoflowers. Recent Pat. Nanotechnol. 10(2), 86–115 (2016)

    Article  CAS  Google Scholar 

  390. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Chem. 31(1), 5–147 (2003)

    Article  CAS  Google Scholar 

  391. J. Du, Z. Liu, Z. Li, B. Han, et al., Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater. Lett. 59(4), 456–458 (2005)

    Article  CAS  Google Scholar 

  392. S. Thongtem, P. Singjai, T.P.S. Thongtem, Growth of carbon nanoflowers on glass slides using sparked iron as a catalyst. Mater. Sci. Eng. A 423(1), 209–213 (2006)

    Article  CAS  Google Scholar 

  393. Y. He, H. Zhao, X. Kong, CN 1962431 A 20070516, 2007

    Google Scholar 

  394. J. Xua, K. Houa, Z. Jua, et al., Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications. J. Electrochem. Soc. 164(2), A430–A437 (2017)

    Article  CAS  Google Scholar 

  395. C. Qian, P. Guo, X. Zhang, et al., Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries. RSC Adv. 6, 93519–93524 (2016)

    Article  CAS  Google Scholar 

  396. J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11(4), 473–481 (2015)

    Article  CAS  Google Scholar 

  397. C.H. Pei, K. Shen, Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties. Electrochem. Commun. 35, 80–83 (2013)

    Article  CAS  Google Scholar 

  398. B. Nanda Sahoo, K. Balasubramanian, Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique. J. Colloid Interface Sci. 436, 111–121 (2014)

    Article  CAS  Google Scholar 

  399. T. Krupenkin, Nanograss, nanobricks, nanonails, and other things useful in your nanolandscaping, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, 22–26 Mar 2009, POLY-333

    Google Scholar 

  400. M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. (24), 3624–3626 (2009)

    Google Scholar 

  401. M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010)

    Article  CAS  Google Scholar 

  402. K. Kakehi, S. Noda, S. Maruyama, Y. Yamaguchi, Individuals, grasses, and forests of single- and multi-walled carbon nanotubes grown by supported Co catalysts of different nominal thicknesses. Appl. Surf. Sci. 254(21), 6710–6714 (2008)

    Article  CAS  Google Scholar 

  403. M. Luling, G. Matthieu, A. Veneruso, Nanograss gamma detector. Eur. Pat. Appl. EP 2007-103888, 2008(13 pp)

    Google Scholar 

  404. X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450°C and their magnetic properties. Carbon. Volume Date 2010 48(2), 365–376 (2009)

    Article  CAS  Google Scholar 

  405. L.S. Panchakarla, A. Govindaraj, Carbon nanostructures and graphite-coated metal nanostructures obtained by pyrolysis of ruthenocene and ruthenocene–ferrocene mixtures. Bull. Mater. Sci. 30(1), 23–29 (2007)

    Article  CAS  Google Scholar 

  406. S.-C. Wong, E.M. Sutherland, F.M. Uhl, Materials processes of graphite nanostructured composites using ball milling. Mater. Manuf. Process. 21, 159–166 (2006)

    Article  CAS  Google Scholar 

  407. J. Gonzalez, J. Herrero, Graphene wormholes: a condensed matter illustration of Dirac fermions in curved space. Nucl. Phys. B B825(3), 426–443 (2009)., Volume Date 2010

    Article  CAS  Google Scholar 

  408. Y. Wang, Encapsulation of palladium crystallites in carbon and the formation of wormlike nanostructures. J. Am. Chem. Soc. 116(1), 397–398 (1994)

    Article  CAS  Google Scholar 

  409. B. Hu, Q. Zhang, Y. Wang, Pd/graphite as a superior catalyst for the direct synthesis of hydrogen peroxide from H2 and O2. Chem. Lett. 38(3), 256–257 (2009)

    Article  CAS  Google Scholar 

  410. L. Sousa Lobo, Intrinsic kinetics in carbon gasification: understanding linearity, “nanoworms” and alloy catalysts. Appl. Catal. B Environ. 148–149, 136–143 (2014)

    Article  CAS  Google Scholar 

  411. S.A.C. Carabineiro, L. Sousa Lobo, Understanding the reactions of CO2, NO, and N2O with activated carbon catalyzed by binary mixtures. Energy Fuel 30(9), 6881–6891 (2016)

    Article  CAS  Google Scholar 

  412. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. J. Mater. Chem. 16(29), 2984–2989 (2006)

    Article  CAS  Google Scholar 

  413. Y. Zhu, J. Li, M. Wan, L. Jiang, Electromagnetic functional urchin-like hollow carbon spheres carbonized by polyaniline micro/nanostructures containing FeCl3 as a precursor. Eur. J. Inorg. Chem. 2009(19), 2860–2864 (2009), https://onlinelibrary.wiley.com/doi/abs/10.1002/ejic.200900040

    Article  CAS  Google Scholar 

  414. J. Shu, Urchin-structured MWNTs/HCS composite as anode material for high-capacity and high-power lithium-ion batteries. Electrochem. Solid-State Lett. 11(12), A219–A222 (2008)

    Article  CAS  Google Scholar 

  415. Z.H. Han, B. Yang, S.H. Kim, M.R. Zachariah, Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 18, 105701, 4 pp (2007)

    Article  CAS  Google Scholar 

  416. J.M. Romo-Herrera, D.A. Cullen, E. Cruz-Silva, D. Ramirez, B.G. Sumpter, V. Meunier, H. Terrones, D.J. Smith, M. Terrones, The role of sulfur in the synthesis of novel carbon morphologies: from covalent Y-junctions to sea-urchin-like structures. Adv. Funct. Mater. 19(8), 1193–1199 (2009)

    Article  CAS  Google Scholar 

  417. J. Chen, F. Cheng, Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42(6), 713–723 (2009)

    Article  CAS  Google Scholar 

  418. Y. Wang, G. Xing, Z. Jun Han, Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale 6, 8884–8890 (2014)

    Article  CAS  Google Scholar 

  419. Y. Wang, Z. Jun Han, S. Fung Yu, et al., Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64, 230–236 (2013)

    Article  CAS  Google Scholar 

  420. T.-H. Chen, T.-Y. Tsai, K.-C. Hsieh, S.-C. Chang, N.-H. Tai, H.-L. Chen, Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes. Nanotechnology 19(46), 465303/1–465303/6 (2008)

    CAS  Google Scholar 

  421. J. Huang, Q. Zhang, M. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009)

    Article  CAS  Google Scholar 

  422. Y. Tang, B.L. Allen, D.R. Kauffman, A. Star, Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 131(37), 13200–13201 (2009)

    Article  CAS  Google Scholar 

  423. H. Chun, M.G. Hahm, Y. Homma, R. Meritz, K. Kuramochi, L. Menon, L. Ci, P.M. Ajayan, Y.J. Jung, Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers. ACS Nano 3(5), 1274–1278 (2009)

    Article  CAS  Google Scholar 

  424. M. Ohtani, K. Saito, S. Fukuzumi, Synthesis, characterization, redox properties, and photodynamics of donor-acceptor nanohybrids composed of size-controlled cup-shaped nanocarbons and porphyrins. Chem Eur J 15(36), 9160–9168 (2009)., S9160/1-S9160/3

    Article  CAS  Google Scholar 

  425. M. Gwan Hahm, A. Leela Mohana Reddy, D.P. Cole, et al., Carbon nanotube–nanocup hybrid structures for high power supercapacitor applications. Nano Lett. 12(11), 5616–5621 (2012)

    Article  CAS  Google Scholar 

  426. B. Kumar Gupta, G. Kedawat, P. Kumar, Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays. RSC Adv. 6, 9932–9939 (2016)

    Article  CAS  Google Scholar 

  427. A.A. Moosa, F. Kubba, M. Raad, S.A. A. Ramazani, Mechanical and thermal properties of graphene nanoplates and functionalized carbon-nanotubes hybrid epoxy nanocomposites. Am. J. Mater. Sci. 6(5), 125–134 (2016)

    Google Scholar 

  428. Y. Soo Yun, S. Youn Cho, J. Shim, et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25(14), 1993–1998 (2013)

    Article  CAS  Google Scholar 

  429. S. Lee, M. Eui Lee, M. Yeong Song, et al., Morphologies and surface properties of cellulose-based activated carbon nanoplates. Carbon Lett. 20, 32–38 (2016)

    Article  Google Scholar 

  430. J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible mesoporous nitrogen-doped hollow carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8(43), 29628–29636 (2016)

    Article  CAS  Google Scholar 

  431. J.R. Roberts, R.R. Mercer, A.B. Stefaniak, et al., Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphenebased nanomaterial family. Part. Fibre Toxicol. 13(34), 22 (2016)

    Google Scholar 

  432. D.N. Futaba, K. Miyake, K. Murata, Y. Hayamizu, T. Yamada, S. Sasaki, M. Yumura, K. Hata, Dual porosity single-walled carbon nanotube material. Nano Lett. 9(9), 3302–3307 (2009)

    Article  CAS  Google Scholar 

  433. M.N. Ghasemi-Nejhad, A. Cao. Editor(s): M. Laudon; B. Romanowicz. Development of nanodevices, nanostructures, nanocomposites, and hierarchical nanocomposites at Hawaii Nanotechnology Laboratory. in NSTI Nanotech 2007, Nanotechnology Conference and Trade Show, Santa Clara, 20–24 May 2007, 4, 538–542

    Google Scholar 

  434. S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. Pan, Y. Nakayama, Growth of super long aligned brush-like carbon nanotubes. Jpn. J. Appl. Phys. 45(28), L720–L722 (2006)

    Article  CAS  Google Scholar 

  435. J. Dinesh, M. Eswaramoorthy, C.N.R. Rao, Use of amorphous carbon nanotube brushes as templates to fabricate GaN nanotube brushes and related materials. J. Phys. Chem. C 111(2), 510–513 (2007)

    Article  CAS  Google Scholar 

  436. V. Pushparaj, L. Mahadevan, S. Sreekala, L. Ci, R. Nalamasu, P.M. Ajayan, Deformation and capillary self-repair of carbon nanotube brushes. Carbon 50, 5618–5630 (2012)

    Article  CAS  Google Scholar 

  437. W. Marks, S. Yang, G. Dombi, S. Bhatia, Hydrogel composites containing carbon nanobrushes as tissue scaffolds. MRS Proc. 1498, 53–58 (2013)

    Article  CAS  Google Scholar 

  438. W. Marks, S. Yang, G. Dombi, S. Bhatia, Carbon nanobrush-containing poloxamer hydrogel. Composites for tissue regeneration. J. Long Term Eff. Med. Implants. 22(3), 229–236 (2012)

    Article  CAS  Google Scholar 

  439. Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, F. Moussy, Y. Li, W.I. Milne, Design of carbon nanotube fiber microelectrode for glucose biosensing. Chem. Techn. Biotechnol. 87(2), 256–262 (2012)

    Article  CAS  Google Scholar 

  440. J.-G. Fan, J.-X. Fu, A. Collins, Y.-P. Zhao, The effect of the shape of nanorod arrays on the nanocarpet effect. Nanotechnology 19(4), 045713/1–045713/8 (2008)

    Article  CAS  Google Scholar 

  441. Y.-P. Zhao, J.-G. Fan, Clusters of bundled nanorods in nanocarpet effect. Appl. Phys. Lett. 88(10), 103123/1–103123/3 (2006)

    Article  CAS  Google Scholar 

  442. J.-G. Fan, D. Dyer, G. Zhang, Y.-P. Zhao, Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 4(11), 2133–2138 (2004)

    Article  CAS  Google Scholar 

  443. M. Castellino, M. Tortello, S. Bianco, S. Musso, M. Giorcelli, M. Pavese, R.S. Gonnelli, A. Tagliaferro, Thermal and electronic properties of macroscopic multi-walled carbon nanotubes blocks. J. Nanosci. Nanotechnol. 10(6), 3828–3833 (2010)

    Article  CAS  Google Scholar 

  444. K. Krzysztof, M. Shaffer, A. Windle, Three-dimensional internal order in multiwall carbon nanotubes grown by chemical vapor deposition. Adv. Mater. 17(6), 760–763 (2005)

    Article  CAS  Google Scholar 

  445. N. Grobert, M. Mayne, M. Terrones, J. Sloan, R. E. Dunin-Borkowskif, R. Kamalakaran, T. Seeger, H. Terrones, M. Riihle, D.R.M. Walton, H. W. Kroto, H. L. Hutchisonf. Metal and alloy nanowires: iron and invar inside carbon nanotubes. in: CP591, Electronic Properties of Molecular Nanostructures, ed by H. Kuzmany, et al. (Ed), (American Institute of Physics, College Park, Mariland, USA, 2001), pp. 287–290

    Google Scholar 

  446. S.Y. Chen, H.Y. Miao, J.T. Lue, M.S. Ouyang, Fabrication and field emission property studies of multiwall carbon nanotubes. J. Phys. D. Appl. Phys. 37, 273–279 (2004)

    Article  CAS  Google Scholar 

  447. E.B. Sansom, D. Rinderknecht, M. Gharib, Controlled partial embedding of carbon nanotubes within flexible transparent layers. Nanotechnology 19, 035302, 6 pp (2008)

    Article  CAS  Google Scholar 

  448. H. Kai-Hsuan, T. Shinn-Shyong, K. Wen-Shyong, W. Bingqing, K. Tse-Hao, Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology 19, 295602 (2008)

    Article  CAS  Google Scholar 

  449. F. Seichepine, S. Salomon, M. Collet, et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets. Nanotechnology 23(9), 1–7 (2012)

    Article  CAS  Google Scholar 

  450. J. Zhang, K. Wang, Q. Xu, et al., Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015)

    Article  CAS  Google Scholar 

  451. R. Liping, Z. Hangyu, L. Hanlin, L. Jingping, T. Fushan, S. Ying-Kang, Z. Xiaojun, Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. PNAS 106(13), 5105–5110 (2009) http://www.pnas.org/content/106/13/5105.full.pdf+html

  452. S. Borhani, S.A.H. Ravandi, S.G. Etemad, Evaluation of surface roughness of polyacrylonitrile nanowebs. Iran. J. Polym Sci. Technol. (Persian Edition) 21(1), 61–69 (2008)

    CAS  Google Scholar 

  453. G. Chen, H.J.C. Gommeren, L.M. Knorr, Liquid filtration media. U.S. Pat. Appl. US 2009026137, Publ. 2009, 8 pp. Cont.-in-part of U.S. Ser. No. 74,164. A1 20090129 US 2008-284027

    Google Scholar 

  454. C.-H. Chi, H.S. Lim, Pleated nanoweb structures for filters. Appl. Publ. 2009, 8 pp. US 2009064648 A1 20090312 US 2007-899803

    Google Scholar 

  455. D. C. Jones, W. H. Stone Fuel filter. U.S. Pat. Appl. Publ. 2008, 5 pp. US 2008105626 A1 20080508 US 2006-591733

    Google Scholar 

  456. S. Torres-Peiro, A. Diez, J.L. Cruz, M.V. Andres, C.M.B. Cordeiro, C.J. de Matos Fabrication and postprocessing of Ge-doped nanoweb fibers. in SAIP Conference Proceedings, 2008, 1055 (1st Workshop on Specialty Optical Fibers and Their Applications, 2008), 50–53

    Google Scholar 

  457. K.W. Hutchenson, M.A. Page, A. Raghavanpillai, S. Reinartz, C.M. Stancik, J.J. Van Gorp, Method for production of nanoweb composite material containing short perfluorinated alkyl chains. US Patent Appl. Publ. 2009, 11 pp. US 2009047498 A1 20090219 US 2007-837647

    Google Scholar 

  458. K.A. Darling, C.L. Reynolds Jr., D.N. Leonard, G. Duscher, R.O. Scattergood, C.C. Koch, Self-assembled three-dimensional Cu-Ge nanoweb composite. Nanotechnology 19(13), 135603/1–135603/6 (2008)

    Article  CAS  Google Scholar 

  459. B.W. Ahn, Y.S. Chi, T.J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 110(6), 4055–4063 (2008)

    Article  CAS  Google Scholar 

  460. D. Kimmer, P. Slobodian, D. Petras, M. Zatloukal, R. Olejnik, P. Saha, Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polym. Sci. 111(6), 2711–2714 (2009)

    Article  CAS  Google Scholar 

  461. T.-G. Kim, D. Ragupathy, A.I. Gopalan, K.-P. Lee, Electrospun carbon nanotubes-gold nanoparticles embedded nanowebs: prosperous multi-functional nanomaterials. Nanotechnology 21(13), 134021 (2010)

    Article  CAS  Google Scholar 

  462. S.-G. Kang, Y.-H. Bae, S.-L. Quan, I.-J. Chin, Electrospun PMMA/polyhedral oligomeric silsesquioxane (POSS) nanohybrid nanofibers. PMSE Prepr. 101, 1293–1294 (2009)

    CAS  Google Scholar 

  463. N. Yahya, B.H. Guan, L.K. Pah, Catalytic effect of formation of a web-like carbon nanostructures. Solid State Sci. Technol. 15(1), 22–29 (2007)

    Google Scholar 

  464. C.K. Chung, S.T. Hung, C.W. Lai, Effect of microstructure on the mechanical properties of carbon nanofilms deposited on the Si(100) at high temperature under ultra high vacuum. Surf. Coat. Technol. 204(6–7), 1066–1070 (2009)

    Article  CAS  Google Scholar 

  465. M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Applications of carbon nanotubes in the twenty-first century. Phil. Trans. R. Soc. Lond. A 362, 2223–2238 (2004)

    Article  CAS  Google Scholar 

  466. H.E. Cho, S.J. Seo, M.-S. Khil, H. Kim, Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 168(2), 271–275 (2015)

    Article  CAS  Google Scholar 

  467. H.-D. Lim, Y. SooYun, Y. Ko, et al., Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries. Carbon 118, 114–119 (2017)

    Article  CAS  Google Scholar 

  468. L. Li, A. Manthiram, O- and N-doped carbon nanowebs as metal-free catalysts for hybrid Li-air batteries. Adv. Energy Mater. 4(10), 1301795 (2014)

    Article  CAS  Google Scholar 

  469. Z. Yang, Q. Meng, Z. Guo, et al., Highly reversible lithium storage in uniform Li4Ti5O12/carbon hybrid nanowebs as anode material for lithium-ion batteries. Energy 55, 925–932 (2013)

    Article  CAS  Google Scholar 

  470. Q. Huang, L. Liu, D. Wang, et al., One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J. Mater. Chem. A 4, 6802–6808 (2016)

    Article  CAS  Google Scholar 

  471. S. Liu, L. Li, H.S. Ahn, A. Manthiram, Delineating the roles of Co3O4 and N-doped carbon nanoweb (CNW) in bifunctional Co3O4/CNW catalysts for oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 3, 11615–11623 (2015)

    Article  CAS  Google Scholar 

  472. G. Benedek, H. Vahedi-Tafreshi, E. Barborini, P. Piseri, P. Milani, C. Ducati, J. Robertson, The structure of negatively curved spongy carbon. Diam. Relat. Mater. 12(3–7), 768–773 (2003)

    Article  CAS  Google Scholar 

  473. F.H. Oliveira Carvalho, A. Rodrigues Vaz, S. Moshkalev, R. Valentim Gelamo, Synthesis of carbon nanostructures near room temperature using microwave PECVD. Mater. Res. 18(4), 860–866 (2015)

    Article  CAS  Google Scholar 

  474. N.Q. Le, Increasing carbon nanosponge oil absorbency through infusion of boron. AAAS 2015 Annual Meeting, 2015., https://aaas.confex.com/aaas/2015/webprogram/Paper15430.html

  475. D.P. Hashim, N.T. Narayanan, J.M. Romo-Herrera, et al., Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2, 363 (2012)

    Article  CAS  Google Scholar 

  476. F.C.C. Moura, R.M. Lago, Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl. Catal. B Environ. 90(3–4), 436–440 (2009)

    Article  CAS  Google Scholar 

  477. W. Zhou, R.P. Tiwari, R. Annamalai, R. Sooryakumar, V. Subramaniam, D. Stroud, Sound propagation in light-modulated carbon nanosponge suspensions. Phys. Rev. B 79, 104204 (2009)

    Article  CAS  Google Scholar 

  478. A.V. Rode, E.G. Gamaly, A.G. Christy, J.G. Fitz Gerald, S.T. Hyde, R.G. Elliman, B. Luther-Davies, A.I. Veinger, J. Androulakis, J. Giapintzakis, Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 70, 054407, 9 pp (2004)

    Article  CAS  Google Scholar 

  479. N.K. Sidhu, A.C. Rastogi, Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synth. Met. 219, 1–10 (2016)

    Article  CAS  Google Scholar 

  480. K. Lee, H. Song, K. Hoon Lee, et al., Nickel nanofoam/different phases of ordered mesoporous carbon composite electrodes for superior capacitive energy storage. ACS Appl. Mater. Interfaces 8(34), 22516–22525 (2016)

    Article  CAS  Google Scholar 

  481. R. Della Noce, S. Eugénio, M. Boudard, et al., One-step process to form a nickel-based/carbon nanofoam composite supercapacitor electrode using Na2SO4 as an eco-friendly electrolyte. RSC Adv. 6, 15920–15928 (2016)

    Article  CAS  Google Scholar 

  482. P. Ramakrishnan, S. Shanmugam, J. Hyun Kim, Dual heteroatom-doped carbon nanofoam-wrapped iron monosulfide nanoparticles: an efficient cathode catalyst for Li–O2 batteries. ChemSusChem 10(7), 1554–1562 (2017)

    Article  CAS  Google Scholar 

  483. C.N. Chervin, M.J. Wattendorf, J.W. Long, N.W. Kucko, D.R. Rolison, Carbon nanofoam-based cathodes for Li–O2 batteries: correlation of pore–solid architecture and electrochemical performance. J. Electrochem. Soc. 160(9), A1510–A1516 (2013)

    Article  CAS  Google Scholar 

  484. N. Frese, S. Taylor Mitchell, C. Neumann, A. Bowers, A. Gölzhäuser, K. Sattler, Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein J. Nanotechnol. 7, 2065–2073 (2016)

    Article  CAS  Google Scholar 

  485. Z. Zhu, D. Tomanek, Formation and stability of cellular carbon foam structures: an ab initio study. Phys. Rev. Lett. 109, 135501 (2012)

    Article  CAS  Google Scholar 

  486. Y.-L. Li, W. Luo, X.-J. Chen, Z. Zeng, H.-Q. Lin, R. Ahuja, Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6. Sci. Rep. 3, 3331 (2013)

    Article  Google Scholar 

  487. E.G. Gamaly, A.V. Rode, Nanostructures created by lasers, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H. S. Nalwa (Ed), vol. 7, (American Scientific Publishers, Valencia, California, 2004), pp. 783–809

    Google Scholar 

  488. A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., ‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)

    Article  CAS  Google Scholar 

  489. A.V. Rode, E.G. Gamaly, B. Luther-Davies, Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation. Appl. Phys. A Mater. Sci. Process. 70, 135–144 (2000)

    Article  CAS  Google Scholar 

  490. S. Li, J. Guangbin, L. Liya, Magnetic carbon nanofoams. J. Nanosci. Nanotechnol. 9, 1133–1136 (2009)

    Article  CAS  Google Scholar 

  491. D.W.M. Lau, D.G. McCulloch, N.A. Marks, N.R. Madsen, A.V. Rode, High-temperature formation of concentric fullerene-like structures within foam-like carbon: experiment and molecular dynamics simulation. Phys. Rev. B 75, 233408 (2007)

    Article  CAS  Google Scholar 

  492. Z. Liu, S.-K. Joung, T. Okazaki, K. Suenaga, Y. Hagiwara, T. Ohsuna, K. Kuroda, S. Iijima, Self-assembled double ladder structure formed inside carbon nanotubes by encapsulation of H8Si8O12. ACS Nano 3(5), 1160–1166 (2009)

    Article  CAS  Google Scholar 

  493. S.P. Sharma, S.C. Lakkad, Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique. Surf. Coat. Technol. 203(10–11), 1329–1335 (2009)

    Article  CAS  Google Scholar 

  494. C. Ronning, D. Schwen, One dimensional material from semiconductors. Nanowires, nanosaws, nanospirals. Physik in Unserer Zeit 37(1), 34–40 (2006)

    Article  CAS  Google Scholar 

  495. V.Y. Prinz, Three-dimensional self-shaping nanostructures based on free stressed heterofilms. Russ. Phys. J. (Translation of Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika) 46(6), 568–576 (2003)

    CAS  Google Scholar 

  496. P.G. Mezey, Computational quantum chemistry design of nanospirals and nanoneedles. Lecture Series on Computer and Computational Sciences 6(Trends and Perspectives in Modern Computational Science), 222–230 (2006)

    CAS  Google Scholar 

  497. S. Vaudreuil, M. Bousmina, Stretchable carbon nanosprings production by a catalytic growth process. J. Nanosci. Nanotechnol. 9(8), 4880–4885 (2009)

    Article  CAS  Google Scholar 

  498. L. Liu, J. Zhao, Toroidal and coiled carbon nanotubes, in Syntheses and Applications of Carbon Nanotubes and Their Composites, (InTech, London, UK, 2013), pp. 257–281

    Google Scholar 

  499. A. Zettl, C. John, Sharpened nanotubes, nanobearings, and nanosprings, in CP544, Electronic Properties of Novel Materials—Molecular Nanostructures, ed. by H. Kuzmany et al. (Eds), (American Institute of Physics, College Park, Maryland, USA, 2000)

    Google Scholar 

  500. K. Mukhopadhyay, D. Porwal, K.U.B. Rao, Carbon micro/nano spring structures in the absence of sulphurous promoter by CCVD method. J. Nanosci. Nanotechnol. 7(6), 1851–1854 (2007)

    Article  CAS  Google Scholar 

  501. N. Tang, W. Kuo, C. Jeng, L. Wang, K. Lin, Y. Du, Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 4(2), 781–788 (2010)

    Article  CAS  Google Scholar 

  502. K. Nakamatsu, J. Igaki, M. Nagase, T. Ichihashi, S. Matsui, Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD. Microelectron. Eng. 83(4–9), 808–810 (2006)

    Article  CAS  Google Scholar 

  503. K. Nakamatsu, T. Ichihashi, K. Kanda, Y. Haruyama, T. Kaito, S. Matsui, Nanostructure analysis of nanosprings fabricated by focused-ion-beam chemical vapor deposition. Jpn. J. Appl. Phys. 48(10), 105001/1–105001/4 (2009)

    Article  CAS  Google Scholar 

  504. X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299–1304 (2003)

    Article  CAS  Google Scholar 

  505. M. Mahdi Zaeria, S. Ziaei-Rad, Elastic behavior of carbon nanocoils: a molecular dynamics study. AIP Adv. 5, 117114 (2015)

    Article  CAS  Google Scholar 

  506. M. Neek-Amal, J. Beheshtian, F. Shayeganfar, S.K. Singh, J.H. Los, F.M. Peeters, Spiral graphone and one-sided fluorographene nanoribbons. Phys. Rev. B 87, 075448 (2013)

    Article  CAS  Google Scholar 

  507. J. Liu, Y.-L. Lu, M. Tian, F. Li, J. Shen, Y. Gao, L. Zhang, The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: simulation and experiment. Adv. Funct. Mater. 23(9), 1156–1163 (2013)

    Article  CAS  Google Scholar 

  508. J. Zhan. Editor(s): Voler, Nicolas H., Carbon nanotubes as use of nanothermometer. Bando, Yoshio. Materials Integration 17(6), 34–40 (2004)

    Google Scholar 

  509. Y. Bando, World smallest nanothermometer using carbon nanotube. Kagaku 59(6), 20–24 (2004)

    CAS  Google Scholar 

  510. Y. Bando, Oxide-nanotubes as use of nanothermometer. Seramikkusu 41(4), 262–266 (2006)

    CAS  Google Scholar 

  511. Y. Bando, Nanothermometer using oxide nanotubes. Materials Integration 18(1), 42–47 (2004). Volume Date 2005

    Google Scholar 

  512. Y. Bando, Study of nanomaterials by using state-of-the-art microscopy. Kagaku to Kogyo 57(6), 595–600 (2004)

    CAS  Google Scholar 

  513. G. Yihua, B. Yoshio, Carbon nanothermometer containing gallium. Nature 415(7), 599–600 (2002)

    Google Scholar 

  514. A.M. Popova, Y.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Phys. Solid State 51(6), 1306–1314 (2009)

    Article  CAS  Google Scholar 

  515. R. Ansari, M. Daliri, M. Hosseinzadeh, On the van der Waals interaction of carbon nanotubes as electromechanical nanothermometers. Acta Mech. Sinica 29(4), 622–632 (2013)

    Article  CAS  Google Scholar 

  516. Z. Liu, Y. Bando, J. Hu, K. Ratinac, S.P. Ringer, A novel method for practical temperature measurement with carbon nanotube nanothermometers. Nanotechnology 17(15), 3681–3684 (2006)

    Article  CAS  Google Scholar 

  517. J. Zhan, Y. Bando, J. Hu, D. Golberg, Nanothermometers: bulk synthesis and calibration, in Abstracts of Papers, 232nd ACS National Meeting, San Francisco, 10–14 Sept 2006, INOR-488

    Google Scholar 

  518. Y. Gao, Y. Bando, D. Golberg, Melting and expansion behavior of indium in carbon nanotubes. Appl. Phys. Lett. 81(22), 4133–4135 (2002)

    Article  CAS  Google Scholar 

  519. A.M. Popov, Y.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Phys. Solid State 51(6), 1306–1314 (2009)

    Article  CAS  Google Scholar 

  520. A.M. Popov, Y.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, Electromechanical nanothermometer based on carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct. 16(5–6), 352–356 (2008)

    Article  CAS  Google Scholar 

  521. A. Vyalikh, R. Klingeler, S. Hampel, D. Haase, M. Ritschel, A. Leonhardt, E. Borowiak-Palen, M. Rümmeli, A. Bachmatiuk, R.J. Kalenczuk, H.-J. Grafe, B. Büchner, A nanoscaled contactless thermometer for biological systems. Phys. Status Solidi B 244(11), 4092–4096 (2007)

    Article  CAS  Google Scholar 

  522. C. Wang, K. Jiang, Q. Wu, J. Wu, C. Zhang, Green synthesis of red-emitting carbon nanodots as a novel “turn-on” nanothermometer in living cells. Chem. Eur. J. 22(41), 14475–14479 (2016)

    Article  CAS  Google Scholar 

  523. X. Liu, X. Tang, Y. Hou, Q. Wu, G. Zhang, Fluorescent nanothermometers based on mixed shell carbon nanodots. RSC Adv. 5, 81713–81722 (2015)

    Article  CAS  Google Scholar 

  524. K. Jiang, J. Wu, Q. Wu, X. Wang, C. Wang, Y. Li, Stable fluorescence of green-emitting carbon nanodots as a potential nanothermometer in biological media. Part. Part. Syst. Charact. 4(2), 1600197 (2017)

    Article  CAS  Google Scholar 

  525. Y. Yang, W. Kong, H. Li, et al., Fluorescent N-doped carbon dots as in vitro and in vivo nanothermometer. ACS Appl. Mater. Interfaces 7(49), 27324–27330 (2015)

    Article  CAS  Google Scholar 

  526. Y. Nakayama, Nanomachine “nanotweezers”. Kagaku to Kogyo 56(6), 663–666 (2003)

    CAS  Google Scholar 

  527. C. M. Lieber, J. H. Hafner, C. Cheung Li, P. Kim, Direct growth of carbon nanotubes, and their use in nanotweezers, 2002, 46 pp. WO 2002026624

    Google Scholar 

  528. J. Chang, B.-K. Min, J. Kim, S.-J. Lee, L. Lin, Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 18(6) (2009). 065017/1-065017/7

    Article  CAS  Google Scholar 

  529. J. Lee, S. Kim, Manufacture of a nanotweezer using a length controlled CNT arm. Sensors Actuators A Phys. A120(1), 193–198 (2005)

    Article  CAS  Google Scholar 

  530. G. Liu, Y. Miyake, N. Komatsu, Nanocalipers as novel molecular scaffolds for carbon nanotubes. Org. Chem. Front. 4, 911–919 (2017)

    Article  CAS  Google Scholar 

  531. J. M. Tour, NanoCars, in Abstracts, 65th Southwest Regional Meeting of the American Chemical Society, El Paso, 4–7 Nov 2009, SWRM-130

    Google Scholar 

  532. T. Sasaki, A.J. Osgood, L.B. Alemany, K.F. Kelly, J.M. Tour, Synthesis of a nanocar with an angled chassis. Toward circling movement. Org. Lett. 10(2), 229–232 (2008)

    Article  CAS  Google Scholar 

  533. T. Sasaki, J.M. Tour, Synthesis of a dipolar nanocar. Tetrahedron Lett. 48(33), 5821–5824 (2007)

    Article  CAS  Google Scholar 

  534. A.V. Akimov, A.V. Nemukhin, A.A. Moskovsky, A.B. Kolomeisky, J.M. Tour, Molecular dynamics of surface-moving thermally driven nanocars. J. Chem. Theory Comput. 4(4), 652–656 (2008)

    Article  CAS  Google Scholar 

  535. T. Sasaki, J.M. Guerrero, J.M. Tour, The assembly line: self-assembling nanocars. Tetrahedron 64(36), 8522–8529 (2008)

    Article  CAS  Google Scholar 

  536. S. Khatua, J.M. Guerrero, K. Claytor, G. Vives, A.B. Kolomeisky, J.M. Tour, S. Link, Micrometer-scale translation and monitoring of individual nanocars on glass. ACS Nano 3(2), 351–356 (2009)

    Article  CAS  Google Scholar 

  537. G.J. Simpson, V. García-López, P. Petermeier, L. Grill, J.M. Tour, How to build and race a fast nanocar. Nat. Nanotechnol. 12, 604–606 (2017)

    Article  CAS  Google Scholar 

  538. G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42(3), 473–487 (2009)

    Article  CAS  Google Scholar 

  539. G. Vives, J. M. Tour, Synthesis of a nanocar with organometallic wheels, in Abstracts of Papers, 238th ACS National Meeting, Washington, DC, 16–20 Aug 2009, INOR-346

    Google Scholar 

  540. G. Vives, J.M. Tour, Synthesis of a nanocar with organometallic wheels. Tetrahedron Lett. 50(13), 1427–1430 (2009)

    Article  CAS  Google Scholar 

  541. J.-F. Morin, Y. Shirai, J.M. Tour, En route to a motorized nanocar. Org. Lett. 8(8), 1713–1716 (2006)

    Article  CAS  Google Scholar 

  542. Y. Shirai, A.J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, Y.-H. Chiu, L.B. Alemany, T. Sasaki, J.-F. Morin, J.M. Guerrero, K.F. Kelly, J.M. Tour, Surface-rolling molecules. J. Am. Chem. Soc. 128(14), 4854–4864 (2006)

    Article  CAS  Google Scholar 

  543. Y. Shirai, A.J. Osgood, Y. Zhao, K.F. Kelly, J.M. Tour, Directional control in thermally driven single-molecule nanocars. Nano Lett. 5(11), 2330–2334 (2005)

    Article  CAS  Google Scholar 

  544. Z.L. Wang, P. Poncharal, W.A. de Heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids 61, 1025–1030 (2000)

    Article  CAS  Google Scholar 

  545. A. Mirmohseni, M. Shojaei, M.A.H. Feizi, F.F. Azhar, M. Rastgouye-Houjaghan, Application of quartz crystal nanobalance and principal component analysis for detection and determination of nickel in solution. J. Environ. Sci. Health, Part A: Tox. Hazard. Subst. Environ. Eng. 45(9), 1119–1125 (2010)

    Article  CAS  Google Scholar 

  546. O.A. Williams, V. Mortet, M. Daenen, K. Haenen, The diamond nano-balance. J. Nanosci. Nanotechnol. 9(6), 3483–3486 (2009)

    Article  CAS  Google Scholar 

  547. Y. Huang, X. Bai, Y. Zhang, In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. J. Phys. Condens. Matter 18(15), L179–L184 (2006)

    Article  CAS  Google Scholar 

  548. J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Graphene nanomesh. Nat. Nanotechnol. 5(3), 190–194 (2010)

    Article  CAS  Google Scholar 

  549. B. Jingwei, Z. Xing, J. Shan, H. Yu, D. Xiangfeng, Graphene nanomesh. Nat. Nanotechnol. 5(3), 190–194 (2010)

    Article  CAS  Google Scholar 

  550. X. Liang, Y.-S. Jung, S. Wu, A. Ismach, D.L. Olynick, S. Cabrini, J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10(7), 2454–2460 (2010)

    Article  CAS  Google Scholar 

  551. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7), 4174–4180 (2010)

    Article  CAS  Google Scholar 

  552. H.L. Zhang, W. Chen, H. Huang, L. Chen, A.T.S. Wee, Preferential trapping of C60 in nanomesh voids. J. Am. Chem. Soc. 130, 2720–2721 (2008)

    Article  CAS  Google Scholar 

  553. H. Wang, L. Zhi, K. Liu, et al., Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Adv. Funct. Mater. 25(34), 5420–5427 (2015)

    Article  CAS  Google Scholar 

  554. D.-P. Yang, X. Wang, X. Guo, et al., UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies. J. Phys. Chem. C 118(1), 725–731 (2014)

    Article  CAS  Google Scholar 

  555. H.-H. Byeon, W. Chul Lee, W. Kim, et al., Bio-fabrication of nanomesh channels of single-walled carbon nanotubes for locally gated field-effect transistors. Nanotechnology 28, 025304 (2017)

    Article  CAS  Google Scholar 

  556. X.-L. Su, M.-Y. Cheng, L. Fu, et al., Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins. J. Power Sources 362, 27–38 (2017)

    Article  CAS  Google Scholar 

  557. S.-J. Choi, P. Bennett, D. Lee, J. Bokor, Highly uniform carbon nanotube nanomesh network transistor. Nano Res. (8), 1320 (2015)

    Article  CAS  Google Scholar 

  558. X.F. Yang, H.L. Wang, Y.S. Chen, et al., Giant spin thermoelectric effects in all-carbon nanojunctions. Phys. Chem. Chem. Phys. 17, 22815–22822 (2015)

    Article  CAS  Google Scholar 

  559. Y. Liao, Y. Xie, K. Pan, et al., Fe3W3C/WC/graphitic carbon ternary nanojunction hybrids for dye-sensitized solar cells. ChemSusChem 8(4), 726–733 (2015)

    Article  CAS  Google Scholar 

  560. I.A. Pshenichnyuk, P.B. Coto, S. Leitherer, M. Thoss, Charge transport in pentacene-graphene nanojunctions. J. Phys. Chem. Lett. 4(5), 809–814 (2013)

    Article  CAS  Google Scholar 

  561. M.M. Hassan, A.A. El-Barbary, M.A. Kamel, K.M. Eid, H.O. Taha, Mono-vacancy and B-doped defects in carbon heterojunction nanodevices. Graphene 4, 84–90 (2015)

    Article  CAS  Google Scholar 

  562. D. Szczesniak, A. Khater, Z. Bak, R. Szczesniak, M. Abou Ghantous, Quantum conductance of silicon-doped carbon wire nanojunctions. Nanoscale Res. Lett. 7, 616 (2012)

    Article  CAS  Google Scholar 

  563. A.G. Krivenko, N.S. Komarova, Electrochemistry of nanostructured carbon. Russ. Chem. Rev. 77(11), 927–943 (2008)

    Article  CAS  Google Scholar 

  564. A. Barhoum, P. Samyn, T. Öhlundd, A. Dufresnee, Review of recent research on flexible multifunctional nanopapers. Nanoscale 9, 15181–15205 (2017)

    Article  CAS  Google Scholar 

  565. Y. Zhao, E.D. Cabrera, M.C. Jose, L.J. Lee, Chapter 4 - Carbon nanopaper: a platform to high-performance multifunctional composites, in Nanopapers From Nanochemistry and Nanomanufacturing to Advanced Applications, Micro and Nano Technologies, (Elsevier Science, New York, 2018), pp. 87–120

    Chapter  Google Scholar 

  566. L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. McDonough, L. Wågberg, Y. Cui, Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2, 138–145 (2013)

    Article  CAS  Google Scholar 

  567. D.P. Wong, R. Suriyaprabha, R. Yuvakumar, V. Rajendran, Y.-T. Chen, B.-J. Hwang, L.-C. Chen, K.-H. Chen, Binder-free rice husk-based silicon–graphene composite as energy efficient Li-ion battery anodes. J. Mater. Chem. A 2, 13437–13441 (2014)

    Article  CAS  Google Scholar 

  568. J. Zhuge, J. Gou, R.-H. Chen, et al., Fire retardant evaluation of carbon nanofiber/graphite nanoplatelets nanopaper-based coating under different heat fluxes. Compos. Part B 43, 3293–3305 (2012)

    Article  CAS  Google Scholar 

  569. H. Lu, Y. Liu, J. Leng, Carbon nanopaper enabled shape memory polymer composites for electrical actuation and multifunctionalization. Marcomol. Mater. Eng. 297(12), 1138–1147 (2012)

    CAS  Google Scholar 

  570. H. Lu, Y. Liu, J. Gou, J. Leng, S. Du, Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater. Struct. 19(7), 075021/1–075021/7 (2010)

    Article  CAS  Google Scholar 

  571. H. Lu, Y. Liu, J. Gou, J. Leng, S. Du, Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl. Phys. Lett. 96(8), 084102/1–084102/3 (2010)

    Article  CAS  Google Scholar 

  572. H. Lu, P. Bai, W. Yin, F. Liang, J. Gou, Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotechnol. Lett. 5(7), 732–736 (2013)

    Article  Google Scholar 

  573. H. Lu, F. Liang, Y. Yao, J. Gou, D. Hui, Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite. Compos. Part B 59, 191–195 (2014)

    Article  CAS  Google Scholar 

  574. H. Lu, W.M. Huang, J. Leng, Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos. Part B 62, 1–4 (2014)

    Article  CAS  Google Scholar 

  575. X. Zhao, J. Gou, G.G. Song, J. Ou, Strain monitoring in glass fiber reinforced composites embedded with carbon nanopaper sheet using Fiber Bragg Grating (FBG) sensors. Compos. Part B Eng. 40B(2), 134–140 (2009)

    Article  CAS  Google Scholar 

  576. M.R. Bromberg, A. Patlolla, R. Segal, Y. Feldman, Q. Wang, Z. Iqbal, A.I. Frenkel, Synthesis and characterization of platinum nanoparticles on single-walled carbon nanotube “nanopaper” support. J. Phys. Conf. Ser. 190, 012155 (2009)

    Article  CAS  Google Scholar 

  577. J. Gou, R. Blanco, Z. Zhao, A. Khan, A. Appalla, Synthesis of nickel-coated carbon nanopaper sheets by pulse laser deposition. Materials Research Society Symposium Proceedings, 2007, 1006E (Transport Behavior in Heterogeneous Polymeric Materials and Composites), No pp. given, Paper #: 1006-R01-09

    Google Scholar 

  578. M. Das, C. Bittencourt, J.-J. Pireaux, S.A. Shivashankar, Metallic Li in carbonaceous nanotubes grown by metalorganic chemical vapor deposition from a metalorganic precursor. Appl. Organomet. Chem. 22(11), 647–658 (2008)

    Article  CAS  Google Scholar 

  579. D.A. Lowy, A. Patrut, Nanobatteries: decreasing size power sources for growing technologies. Recent Pat. Nanotechnol. 2(3), 208–219 (2008)

    Article  CAS  Google Scholar 

  580. Fast-charging nano batteries. Am. Ceram. Soc. Bull. 85(10), 21–22 (2006) https://bulletin-archive.ceramics.org/uctv2f/

  581. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004)

    Article  CAS  Google Scholar 

  582. P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B 213, 12–40 (2016)

    Article  CAS  Google Scholar 

  583. B. Liu, X. Wu, S. Wang, et al., Flexible carbon nanotube modified separator for high-performance lithium-sulfur batteries. Nano 7, 196 (2017)

    Google Scholar 

  584. W.-J. Yu, C. Liu, L. Zhang, et al., Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, 1600113 (2016)

    Article  CAS  Google Scholar 

  585. W.-S. Kim, J. Choi, S.-H. Hong, Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 9(7), 2174–2181 (2016)

    Article  CAS  Google Scholar 

  586. C. Shen, J. Xie, M. Zhang, et al., Carbon nanotube (CNT) foams as sulfur hosts for high performance lithium sulfur battery. ECS Trans. 77(11), 457–465 (2017)

    Article  CAS  Google Scholar 

  587. A.-R.O. Raji, R. Villegas Salvatierra, N. Dong Kim, et al., Lithium batteries with nearly maximum metal storage. ACS Nano 11(6), 6362–6369 (2017)

    Article  CAS  Google Scholar 

  588. http://www.nanowerk.com/spotlight/spotid=3331.php

  589. A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sensors Actuators B Chem. B146(2), 502–506 (2010)

    Article  CAS  Google Scholar 

  590. F. Korel, M.O. Balaban, Electronic nose technology in food analysis, in Handbook of Food Analysis Instruments, ed. by S. Otles (Ed), (CRC Press, Boca Raton, FL, USA, 2009), pp. 365–378

    Google Scholar 

  591. H. Nanto, Electronic nose (e-NOSE) system. Materials Integration 21(5, 6), 99–104 (2008)

    CAS  Google Scholar 

  592. A.D. Wilson, M. Baietto, Applications and advances in electronic-nose technologies. Sensors 9(7), 5099–5148 (2009)

    Article  CAS  Google Scholar 

  593. C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont, T. Kerdcharoen, Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys. Sensors Actuators B Chem. B147(2), 392–399 (2010)

    Article  CAS  Google Scholar 

  594. S. Kaur, A. Kumar, J.K. Rajput, P. Arora, H. Singh, SnO2—glycine functionalized carbon nanotubes based electronic nose for detection of explosive materials. Sens. Lett. 14(7), 733–739 (2016)

    Article  Google Scholar 

  595. P. Lorwongtragool, E. Sowade, N. Watthanawisuth, R.R. Baumann, T. Kerdcharoen, A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 14, 19700–19712 (2014)

    Article  Google Scholar 

  596. B.D. Lampson, A. Khalilian, J.K. Greene, Y.J. Han, D.C. Degenhardt, Development of a portable electronic nose for detection of cotton damaged by Nezara viridula (Hemiptera: Pentatomidae). J. Insects 2014, 297219, 8 pp (2014)

    Article  Google Scholar 

  597. M.L. Rodríguez-Méndez, J.A. De Saja, R. González-Antón, et al., Electronic noses and tongues in wine industry. Front. Bioeng. Biotechnol. 4, 81 (2016)

    Article  Google Scholar 

  598. A.M. Popov, E. Bichoutskaia, Y.E. Lozovik, A.S. Kulish, Nanoelectromechanical systems based on multi-walled nanotubes: nanothermometer, nanorelay, and nanoactuator. Phys. Status Solidi A 204(6), 1911–1917 (2007)

    Article  CAS  Google Scholar 

  599. J. Li, X. Wang, L. Zhao, X. Gao, Y. Zhao, R. Zhouc, Rotation motion of designed nano-turbine. Sci. Rep. 4, 5846 (2014)

    Article  CAS  Google Scholar 

  600. J. Basu, C. Roy Chaudhuri, Graphene nanogrids FET immunosensor: signal to noise ratio enhancement. Sensors 16, 1481 (2016)

    Article  CAS  Google Scholar 

  601. O.E. Glukhova, I.N. Salii, V.P. Meshchanov, Nano-autoclave on the basis of carbon nanopeapod. Nano- i Mikrosistemnaya Tekhnika 10, 47–52 (2007)

    Google Scholar 

  602. A. Mayoral, H. Barron, R. Estrada-Salas, A. Vazquez-Duran, M. Jose-Yacaman, Nanoparticle stability from the nano to the meso interval. Nanoscale 2, 335–342 (2010)

    Article  CAS  Google Scholar 

  603. W. Wang, T. Christensen, A.-P. Jauho, K.S. Thygesen, M. Wubs, N.A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles. Sci. Rep. (2015). https://doi.org/10.1038/srep09535

  604. H.P. Heiskanen, M. Manninen, J. Akola, Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level. 2008, arXiv:0809.4162v1. https://arxiv.org/pdf/0809.4162

    Article  CAS  Google Scholar 

  605. D. Gorakh Babar, B. Pakhira, S. Sarkar, DNA–carbon nano onion aggregate: triangle, hexagon, six-petal flower to dead-end network. Appl. Nanosci. 7(6), 291–297 (2017)

    Article  CAS  Google Scholar 

  606. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 80(3), 476–478 (2002)

    Article  CAS  Google Scholar 

  607. M. Hu, X. Dong, Y. Pan, et al., A metallic carbon consisting of helical carbon triangle chains. J. Phys. Condens. Matter 26, 235402, 6 pp (2014)

    Article  CAS  Google Scholar 

  608. Y. Masuda, H. Yoshida, S. Takeda, H. Kohno, In situ transmission electron microscopy of individual carbon nanotetrahedron/nanoribbon structures in Joule heating. Appl. Phys. Lett. 105, 083107 (2015)

    Article  CAS  Google Scholar 

  609. H. Kohno, Y. Masuda, In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending. Appl. Phys. Lett. 106, 193103 (2015)

    Article  CAS  Google Scholar 

  610. H. Kohno, T. Hasegawa, Chains of carbon nanotetrahedra/nanoribbons. Sci. Rep. 5, 8430 (2015)

    Article  CAS  Google Scholar 

  611. T. Hasegawa, H. Kohno, Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth. Phys. Chem. Chem. Phys. 17, 3009–3013 (2015)

    Article  CAS  Google Scholar 

  612. S. Kumar Sonkar, M. Saxena, M. Saha, S. Sarkar, Carbon nanocubes and nanobricks from pyrolysis of rice. J. Nanosci. Nanotechnol. 10, 4064–4067 (2010)

    Article  CAS  Google Scholar 

  613. B. Sun, S. Chen, H. Liu, G. Wang, Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv. Funct. Mater. 25, 4436–4444 (2015)

    Article  CAS  Google Scholar 

  614. G. Oza, M. Ravichandran, V.-I. Merupo, et al., Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci. Rep. 6, 21286 (2016)

    Article  CAS  Google Scholar 

  615. Y. Liang, J. Wei, X. Zhang, et al., Synthesis of nitrogen-doped porous carbon nanocubes as a catalyst support for methanol oxidation. ChemCatChem 8(11), 1901–1904 (2016)

    Article  CAS  Google Scholar 

  616. F. Gao, F. Zhou, Y. Yao, et al., Ordered assembly of platinum nanoparticles on carbon nanocubes and their application in the non-enzymatic sensing of glucose. J. Electroanal. Chem. 803, 165–172 (2017)

    Article  CAS  Google Scholar 

  617. X.-W. Liu, Z.-J. Yao, Y.-F. Wang, X.-W. Wei, Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties. Colloids Surf. B. Biointerfaces 81(2), 508–512 (2010)

    Article  CAS  Google Scholar 

  618. J. Xi, Y. Xia, Y. Xu, J. Xiao, S. Wang, (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 51, 10479–10482 (2015)

    Article  CAS  Google Scholar 

  619. W. Chen, X. Zhang, F. Ai, Graphitic carbon nanocubes derived from ZIF-8 for photothermal therapy. Inorg. Chem. 55(12), 5750–5752 (2016)

    Article  CAS  Google Scholar 

  620. X. Fang, L. Jiao, S.-H. Yu, H.-L. Jiang, Metal–organic framework-derived FeCo-N-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. ChemSusChem 10, 3019–3024 (2017)

    Article  CAS  Google Scholar 

  621. S. Chen, B. Sun, X. Xie, et al., Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reservoirs for lithium–sulfur batteries with long cycle life. Nano Energy 16, 268–280 (2015)

    Article  CAS  Google Scholar 

  622. H.X. Zhang, P.X. Feng, Synthesis of the vertically aligned carbon hexagonal nanoprism arrays and their application for field emission. Appl. Surf. Sci. 255, 5939–5942 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Less-Common Carbon Nanostructures. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_4

Download citation

Publish with us

Policies and ethics