Skip to main content

Abstract

According to much available information, graphite and diamond belong to well-known classic carbon allotropes. In several classifications, natural coal, amorphous carbon, and commercially produced carbon black are added to this non-strict list of conventional carbon forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The image above is reproduced with permission of http://www.homesweetlearning.com.

  2. 2.

    See also additional information below in the section on graphene.

  3. 3.

    About 20 tonnes of diamond are mined each year.

  4. 4.

    About 90 tonnes of diamond are made annually by HPTP method.

  5. 5.

    About 10 tonnes of CVD-grown diamond films are produced annually.

References

  1. H. Lipson, A.R. Stokes, A new structure of carbon. Nature 149(3777), 328 (1942)

    Article  CAS  Google Scholar 

  2. A.Q. Baig, M. Imran, W. Khalid, M. Naeem, Molecular description of carbon graphite and crystal cubic carbon structures. Can. J. Chem. 95(6), 674–686 (2017)

    Article  CAS  Google Scholar 

  3. P. Delhaes, Graphite and Precursors. CRC Press. 312 pp. 2001

    Google Scholar 

  4. C. Barton. Did Graphite in the Chernobyl Reactor Burn? (2011), http://www.theenergycollective.com/charlesbarton/55702/did-graphite-chernobyl-reactor-burn

  5. https://www.texaspowerfulsmart.com/diamond-films/graphite-and-related-materials-rdk.html. Accessed 16 Jan 2018

  6. T. Enoki, M. Suzuki, Graphite Intercalation Compounds and Applications (Oxford University Press, New York, 2003), p. 456

    Google Scholar 

  7. R.V. Lapshin, Automatic lateral calibration of tunneling microscope scanners. Rev. Sci. Instrum. 69(9), 3268–3276 (1998)

    Article  CAS  Google Scholar 

  8. http://www.galleries.com/Graphite. Accessed 15 Jan 2018

  9. https://sciencing.com/similarities-between-graphite-diamonds-8478868.html. Accessed 16 Jan 2018

  10. http://www.newworldencyclopedia.org/entry/Graphite. Accessed 16 Jan 2018

  11. P.P. Magampa, N. Manyala, W.W. Focke, Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J. Nucl. Mater. 436(1–3), 76–83 (2013)

    Article  CAS  Google Scholar 

  12. G.-S. Wang, X.-J. Zhang, Y.-Z. Wei, et al., Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride. J. Mater. Chem. A 1, 7031–7036 (2013)

    Article  CAS  Google Scholar 

  13. W. Wei, S. Hu, R. Zhang, C. Xu, F. Zhang, Q. Liu, Enhanced electrical properties of graphite/ABS composites prepared via supercritical CO2 processing. Polym. Bull. 74, 4279 (2017). https://doi.org/10.1007/s00289-017-1956-8

    Article  CAS  Google Scholar 

  14. P.K.A. Ramanujam, Conducting polymer–graphite binary and hybrid composites: Structure, properties, and applications, in Hybrid Polymer Composite Materials: Applications, (Woodhead Publishing (Elsevier), Kidlington, Oxford, UK, 2017)

    Google Scholar 

  15. K. Kornaus, A. Gubernat, D. Zientara, P. Rutkowski, L. Stobierski, Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites. Pol. J. Chem. Technol. 18(2), 84–88 (2016)

    Article  CAS  Google Scholar 

  16. I.M. Karzov, O.N. Shornikova, S.V. Filimonov, A.P. Malakho, V.V. Avdeev, Cu-expanded graphite composite material preparation and thermal properties. Eurasian Chem. Techn. J. 19(3), 273–277 (2017)

    Article  Google Scholar 

  17. T. Hutsch, T. Schubert, T. Weissgaerber, B. Kieback, Graphite metal composites with tailored physical properties. Emerg. Mater. Res. 1(2), 107–114 (2012)

    Article  CAS  Google Scholar 

  18. S.J. Turneaure, S.M. Sharma, T.J. Volz, J.M. Winey, Y.M. Gupta, Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3(10), eaao3561 (2017)

    Article  CAS  Google Scholar 

  19. A. Alofi, G.P. Srivastava, Evolution of thermal properties from graphene to graphite. Appl. Phys. Lett. 104, 031903 (2014)

    Article  CAS  Google Scholar 

  20. L. Dong, Z. Chen, S. Lin, K. Wang, C. Ma, H. Lu, Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite. Chem. Mater. 29(2), 564–572 (2017)

    Article  CAS  Google Scholar 

  21. K.C. Knirsch, J.M. Englert, C. Dotzer, F. Hauke, A. Hirsch, Screening of the chemical reactivity of three different graphite sources using the formation of reductively alkylated graphene as a model reaction. Chem. Commun. 49, 10811–10813 (2013)

    Article  CAS  Google Scholar 

  22. M. Mulet-Gas, L. Abella, M.R. Cerón, et al., Transformation of doped graphite into cluster-encapsulated fullerene cages. Nat. Commun. 8, 1222 (2017)

    Article  CAS  Google Scholar 

  23. http://www.substech.com/dokuwiki/doku.php?id=applications_of_graphite. Accessed 16 Jan 2018

  24. K. Lee, Fundamental graphite techniques (Lydia Inglett Publishing, 2010), Hilton Head Island, SC, USA, p. 176

    Google Scholar 

  25. http://www.schunk-carbontechnology.com/. Accessed 15 Jan 2018

  26. http://www.olmec.co.uk/graphite_and_carbon_use_in_industrial_applications.htm. Accessed 16 Jan 2018,

  27. E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Harkov. Graphite in science and nuclear technique. 2013, arXiv:1307.1869 [cond-mat.mtrl-sci]

    Google Scholar 

  28. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'Homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)

    Article  CAS  Google Scholar 

  29. D.W. Lee, V.L. De Los Santos, J.W. Seo, L. Leon Felix, D.A. Bustamante, J.M. Cole, C.H.W. Barne, The structure of graphite oxide: investigation of its surface chemical groups. J. Phys. Chem. B 114(17), 5723–5728 (2010)

    Article  CAS  Google Scholar 

  30. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010)

    Article  CAS  Google Scholar 

  31. L. Sun, B. Fugetsu. Massive production of graphene oxide from expanded graphite. arXiv:1301.3253 [cond-mat.mtrl-sci], 2013

    Google Scholar 

  32. M. del Prado, Lavín López, J.L. Valverde Palomino, M.L. Sánchez Silva, A. Romero Izquierdo, Chapter 5. Optimization of the Synthesis Procedures of Graphene and Graphite Oxide, in Recent Advances in Graphene Research, ed. by P. Kumar Nayak (Ed), (INTECH, 2016), London, UK (2016)

    Google Scholar 

  33. (a) W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958); (b) K.-H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Khoyan, C.W. Macosko, Aqueous only route toward graphene from graphite oxide. ACS Nano. 5, 1253–1258 (2011)

    Google Scholar 

  34. O. Jankovský, M. Nováček, J. Luxa, et al., Concentration of nitric acid strongly influences chemical composition of graphite oxide. Chem. Eur. J. 23(26), 6432–6440 (2017)

    Article  CAS  Google Scholar 

  35. L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai, J. Ye, C. Wei, S.P. Lau, Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22(12), 5676 (2012)

    Article  CAS  Google Scholar 

  36. C. Paiva Pousa Soares, R. de Lacerda Baptista, D. Vargas Cesar, Solvothermal reduction of graphite oxide using alcohols. Mat. Res. 21(1) (2018). https://doi.org/10.1590/1980-5373-mr-2017-0726

  37. S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  38. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)

    Article  CAS  Google Scholar 

  39. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1), 103 (2016)

    Article  CAS  Google Scholar 

  40. A.G. Bannov, J. Prášek, O. Jašek, L. Zajíˇcková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17, 320 (2017)

    Article  CAS  Google Scholar 

  41. R. Jamatia, A. Gupta, B. Dam, M. Saha, A. Kumar Pal, Graphite oxide: a metal free highly efficient carbocatalyst for the synthesis of 1,5-benzodiazepines under room temperature and solvent free heating conditions. Green Chem. 19, 1576–1585 (2017)

    Article  CAS  Google Scholar 

  42. V. Parra-Elizondo, B. Escobar-Morales, E. Morales, D. Pacheco-Catalán, Effect of carbonaceous support between graphite oxide and reduced graphene oxide with anchored Co3O4 microspheres as electrode-active materials in a solid-state electrochemical capacitor. J. Solid State Electrochem. 21(4), 975–985 (2017)

    Article  CAS  Google Scholar 

  43. Z. Zeng, L. Yang, Q. Zeng, H. Lou, et al., Synthesis of quenchable amorphous diamond. Nat. Commun. 8, 322 (2017)

    Article  CAS  Google Scholar 

  44. Y. Lin, L. Zhang, H.-k. Mao, et al., Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011)

    Article  CAS  Google Scholar 

  45. Y. Dilek, J. Yang, Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis. Lithosphere 10(1), 3–13 (2018)

    Article  Google Scholar 

  46. P. Cartigny, M. Palot, E. Thomassot, J.W. Harris, Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42(1), 699–732 (2014)

    Article  CAS  Google Scholar 

  47. F. Nabiei, J. Badro, T. Dennenwaldt, et al., A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nat. Commun. 9, 1327 (2018)

    Article  CAS  Google Scholar 

  48. P.V. Zinin, A.V. Nozhkina, R.I. Romanov, et al., Synthesis, characterization of elastic and electrical properties of diamond-like BCx nano-phases synthesized under high and low pressures. MRS Adv. 3(1–2), 45–52 (2018). (Nanomaterials)

    Article  CAS  Google Scholar 

  49. S. Fromentin. Resistivity of Carbon, Diamond. The Physics Factbook. Ed. Glenn Elert (2004). Accessed 7 June 2018

    Google Scholar 

  50. A. Shatskiy, D. Yamazaki, G. Morard, T. Cooray, T. Matsuzaki, Y. Higo, K. Funakoshi, H. Sumiya, E. Ito, T. Katsura, Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev. Sci. Instrum. 80(2), 023907 (2009)

    Article  CAS  Google Scholar 

  51. W. Grochala, Diamond: electronic ground state of carbon at temperatures approaching 0 K. Angew. Chem. Int. Ed. 53(14), 3680–3683 (2014)

    Article  CAS  Google Scholar 

  52. Y. Palyanov, I. Kupriyanov, Y. Borzdov, D. Nechaev, Y. Bataleva, HPHT diamond crystallization in the Mg-Si-C system: effect of Mg/Si composition. Crystals 7(5), 119 (2017)

    Article  CAS  Google Scholar 

  53. B.I. Pepekin, Synthesis of diamond: a review. Russ. J. Phys. Chem. B 4(5), 769–772 (2010)

    Article  Google Scholar 

  54. F.P. Bundy, R.C. DeVries, Diamond: high-pressure synthesis, in Reference Module in Materials Science and Materials Engineering, (Elsevier Science, In, 2016)

    Google Scholar 

  55. C. Chen, Q. Chen, Recent development in diamond synthesis. Int. J. Mod. Phys. B 22(4), 309–326 (2008)

    Article  CAS  Google Scholar 

  56. J. Narayana, A. Bhaumik, Research update: direct conversion of amorphous carbón into diamond at ambient pressures and temperatures in air. APL Mater. 3, 100702 (2015)

    Article  CAS  Google Scholar 

  57. S. Botti, M. Amsler, J.A. Flores-Livas, et al., Carbon structures and defect planes in diamond at high pressure. Phys. Rev. B 88, 014102 (2013)

    Article  CAS  Google Scholar 

  58. Z. Lou, Q. Chen, Y. Zhang, W. Wang, Y. Qian, Diamond formation by reduction of carbon dioxide at low temperatures. J. Am. Chem. Soc. 125, 9302–9303 (2003)

    Article  CAS  Google Scholar 

  59. P. Ji, J. Yu, T. Huang, et al., Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition. Plasma Sci. Technol. 20, 025505 (2018). (6pp)

    Article  CAS  Google Scholar 

  60. M. Chen, J. Shu, X. Xie, D. Tan, H.-k. Mao, Natural diamond formation by self-redox of ferromagnesian carbonate. Proc. Natl. Acad. Sci. 115(11), 2676–2680 (2018). 201720619

    Article  CAS  Google Scholar 

  61. Y. Li, C. Wang, N. Chen, et al., Significant improvement of multi-seed method of diamond synthesis by adjusting the lateral cooling water temperature. Cryst. Eng. Comm. 19, 6681–6685 (2017)

    Article  CAS  Google Scholar 

  62. M. Schwander, K. Partes, A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20(9), 1287–1301 (2011)

    Article  CAS  Google Scholar 

  63. H. Kato, H. Yamada, S. Ohmagari, et al., Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion. Diam. Relat. Mater. 86, 15–19 (2018)

    Article  CAS  Google Scholar 

  64. G.S. RistićI, M.S. TrticaI, Š.S. Miljanić, Diamond synthesis by lasers: recent progress. Quím. Nova 35(7), 1417–1422 (2012)

    Google Scholar 

  65. F.C.B. Maia, R.E. Samad, J. Bettini, R.O. Freitas, N.D. Vieira Junior, N.M. Souza-Neto, Synthesis of diamond-like phase from graphite by ultrafast laser driven dynamical compression. Sci. Rep 5, 11812 (2015)

    Article  Google Scholar 

  66. Q. Liang, C.-s. Yan, J. Lai, Y.-f. Meng, et al., Large Area Single-Crystal Diamond Synthesis by 915 MHz Microwave Plasma-Assisted Chemical Vapor Deposition. Cryst. Growth Des. 14(7), 3234–3238 (2014)

    Article  CAS  Google Scholar 

  67. C. Luo, X. Qi, C. Pan, W. Yang, Diamond synthesis from carbon nanofibers at low temperature and low pressure. Sci. Rep. 5, 13879 (2015)

    Article  Google Scholar 

  68. L.F. Dobrzhinetskaya, H.W. Green, Diamond synthesis from graphite in the presence of water and SiO2: implications for diamond formation in quartzites from Kazakhstan. Int. Geol. Rev. 49(5), 389–400 (2007)

    Article  Google Scholar 

  69. N. Chertkova, S. Yamashita, E. Ito, A. Shimojuku, High-pressure synthesis and application of a 13C diamond pressure sensor for experiments in a hydrothermal diamond anvil cell. Mineral. Mag. 78(7), 1677–1685 (2014)

    Article  Google Scholar 

  70. D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. Published by Maney for the Institute and ASM International 52(1), 29–64 (2007)

    Article  CAS  Google Scholar 

  71. D. Varshney, G. Morell, B.R. Weiner, V. Makarov. Low-energy, hydrogen-free method of diamond synthesis. U.S. Patent 8608850B1, 2009

    Google Scholar 

  72. N.A. Bulienkov, E.A. Zheligovskaya, O.P. Chernogorova, E.I. Drozdova, I.N. Ushakova, E.A. Ekimov, Nonequilibrium diamond growth during the high-temperature high-pressure synthesis of a composite material made of a mixture of cobalt and fullerene powders. Russ. Metall. (Metally) 2018(1), 35–41 (2018)

    Article  Google Scholar 

  73. Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, Y.V. Bataleva, High-pressure synthesis and characterization of diamond from an Mg–Si–C system. Cryst. Eng. Comm. 17, 7323–7331 (2015)

    Article  CAS  Google Scholar 

  74. J.E. Shigley, Identifying Lab-Grown Diamonds (2016) https://www.gia.edu/identifying-lab-grown-diamonds. Accessed 7 June 2018

  75. I.V. Klepikov, A.V. Koliadin, E.A. Vasilev, Analysis of type IIb synthetic diamond using FTIR spectrometry. IOP Conf. Ser. Mater. Sci. Eng. 286, 012035 (2017)

    Article  Google Scholar 

  76. S. Eaton-Magaña, J.E. Post, P.J. Heaney, J. Freitas, et al., Using phosphorescence as a fingerprint for the Hope and other blue diamonds. Geology 36(1), 83–86 (2008)

    Article  CAS  Google Scholar 

  77. R.B. Simon, J. Anaya, F. Faili, et al., Effect of grain size of polycrystalline diamond on its heat spreading properties. Appl. Phys. Express 9, 061302 (2016)

    Article  CAS  Google Scholar 

  78. E. Bernardi, R. Nelz, S. Sonusen, E. Neu, Nanoscale sensing using point defects in single-crystal diamond: recent progress on nitrogen vacancy center-based sensors. Crystals 7(5), 124 (2017)

    Article  CAS  Google Scholar 

  79. V. Nadolinny, A. Komarovskikh, Y. Palyanov, Incorporation of large impurity atoms into the diamond crystal lattice: EPR of split-vacancy defects in diamond. Crystals 7(8), 237 (2017)

    Article  CAS  Google Scholar 

  80. V.L. Skvortsova, M.I. Samoylovich, A.F. Belyanin, Studies of phase composition of contact sites of diamond crystals and the surrounding rocks. Dokl. Earth Sci. 465(Part 1), 1187–1190 (2015)

    Article  CAS  Google Scholar 

  81. Y.M. Belousov, Evolution in time of radiation defects induced by negative pions and muons in crystals with a diamond structure. Crystals 7(6), 174 (2017)

    Article  CAS  Google Scholar 

  82. Special Issue “Diamond Crystals”. Y.N. Palyanov (guest editor). Crystals, 2018, 8(2). http://www.mdpi.com/journal/crystals/special_issues/diamond_crystals

  83. https://www.britannica.com/science/carbon-chemical-element#ref112004. Accessed 14 Jan 2018

  84. J. Robertson, Diamond-like amorphous carbon. Mater Sci. Eng. R Rep. 37(4–6), 129–281 (2002)

    Article  Google Scholar 

  85. D.G. McCulloch, D.R. McKenzie, C.M. Goringe, Ab initio simulations of the structure of amorphous carbon. Phys. Rev. B 61, 2349 (2000)

    Article  CAS  Google Scholar 

  86. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R-Rep. 37, 129 (2002)

    Article  Google Scholar 

  87. J.T. Margraf, V. Strauss, D.M. Guldi, T. Clark, The electronic structure of amorphous carbon nanodots. J. Phys. Chem. B 119(24), 7258–7265 (2015)

    Article  CAS  Google Scholar 

  88. V.L. Deringer, G. Csanyi, D.M. Proserpio, Extracting crystal chemistry from amorphous carbon structures. Chem. Phys. Chem. 18, 873–877 (2017)

    Article  CAS  Google Scholar 

  89. C.W. Chen, J. Robertson, Surface atomic properties of tetrahedral amorphous carbon. Diamond Relat. Mater. 15, 936–938 (2006)

    Article  CAS  Google Scholar 

  90. Overview of Amorphous Carbon Films. In: R.J. Yeo, Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording, Springer Nature Singapore Pte Ltd, Springer Theses, 2017

    Google Scholar 

  91. P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)

    Article  CAS  Google Scholar 

  92. X. Li, P. Guo, L. Sun, A. Wang, P. Ke, Ab Initio investigation on Cu/Cr codoped amorphous carbon nanocomposite films with giant residual stress reduction. ACS Appl. Mater. Interfaces 7, 27878–27884 (2015)

    Article  CAS  Google Scholar 

  93. I. Balchev, K. Tzvetkova, S. Kolev, et al., Synthesis and characterization of thin amorphous carbon films doped with nitrogen on (001) Si substrates. J Phy. Conf. Ser. 764, 012013 (2016)

    Article  CAS  Google Scholar 

  94. H. Gima, A. Zkria, Y. Katamune, R. Ohtani, S. Koizumi, T. Yoshitake, Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition. Appl. Phys. Express 10(1), 015801 (2017)

    Article  Google Scholar 

  95. J.A. Aliaga, G. Alonso-Núñez, T. Zepeda, et al., Synthesis of highly destacked ReS2 layers embedded in amorphous carbon from a metal-organic precursor. J. Non-Cryst. Solids 447, 29–34 (2016)

    Article  CAS  Google Scholar 

  96. K. Nakajima, M. Hara, Amorphous carbon with SO3H groups as a solid brønsted acid catalyst. ACS Catal. 2(7), 1296–1304 (2012)

    Article  CAS  Google Scholar 

  97. J. Robertson, Amorphous carbon. Adv. Phys. 35, 317 (1986)

    Article  CAS  Google Scholar 

  98. G. Huang, L. Yang, X. Ma, J. Jiang, S.H. Yu, H.L. Jiang, Metal–organic framework-templated porous carbon for highly efficient catalysis: the critical role of pyrrolic nitrogen species. Chem. Eur. J. 22, 3470–3477 (2016)

    Article  CAS  Google Scholar 

  99. J. Tang, R.R. Salunkhe, H. Zhang, et al., Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295, 8 pp (2016)

    Article  CAS  Google Scholar 

  100. A. Ishak, M. Rusop, Complex and nano-structured amorphous carbon films from hydrocarbon palm oil as A P-type in photovoltaic heterojunction solar cell applications. Int. J. Sci. Technol. Res. 3(6), 109–113 (2014)

    Google Scholar 

  101. Y. Qin, X. Jiang, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005)

    Article  CAS  Google Scholar 

  102. K. Judai, N. Iguchi, Y. Hatakeyama, Low-temperature production of genuinely amorphous carbon from highly reactive nanoacetylide precursors. J. Chem. 2016., Article ID 7840687, 1–6 (2016)

    Article  CAS  Google Scholar 

  103. J. Narayana, A. Bhaumik, Research update: direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air. Appl. Mater. 3, 100702 (2015)

    Article  CAS  Google Scholar 

  104. M. Zheng, K. Takei, B. Hsia, et al., Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96, 063110 (2010)

    Article  CAS  Google Scholar 

  105. T. Kim, J. Lee, K.-H. Lee, Full graphitization of amorphous carbon by microwave heating. RSC Adv. 6, 24667–24674 (2016)

    Article  CAS  Google Scholar 

  106. A.S. Sinitsa, I.V. Lebedeva, A.M. Popov, A.A. Knizhnik, Transformation of amorphous carbon clusters to fullerenes. J. Phys. Chem. C 121, 13396–13404 (2017)

    Article  CAS  Google Scholar 

  107. https://en.wikipedia.org/wiki/Amorphous_carbon. Accessed 14 Jan 2018

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharisov, B.I., Kharissova, O.V. (2019). Conventional Carbon Allotropes. In: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03505-1_2

Download citation

Publish with us

Policies and ethics