Skip to main content

Polarized Radiation Transport Equation in Anisotropic Media

  • Chapter
  • First Online:
Book cover Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

  • 720 Accesses

Abstract

In particular, in this paper polarized radiation transport equation in media composed of randomly spatially distributed discrete non-spherical scatterers, the scatterer sizes being comparable with the electromagnetic radiation wavelength, has been derived from the equations of classical electrodynamics.

The paper is dedicated to the memory of Evgraph Sergeevich Kuznetsov.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barabanenkov YuN (1969) On the spectral theory of radiation transport equations. JETP 29(4):679

    ADS  Google Scholar 

  • Barabanenkov YuN (1970) Perturbation theory in denominator for average double green function (in Russian). Izv Vyschikh Uch Zav Radiofizika 13(1):106–114

    Google Scholar 

  • Barabanenkov YuN (1971) On Fraunhofer approximation for multiple wave scattering theory (in Russian). Izv Vyschikh Uch Zav Radiofizika 14(2):234–243

    Google Scholar 

  • Barabanenkov YuN (2009) Asymptotic limit of radiative transport theory in problems of multiple scattering of waves in random inhomogeneous media. Phys Usp 52(5):502

    Google Scholar 

  • Barabanenkov YuN, Finkelberg VM (1967) Radiation transport equation for correlated scatterers. JETP 26(3):587

    ADS  Google Scholar 

  • Barabanenkov YuN, Kravtsov YuA, Rytov SM, Tatarsky VI (1971) Status of the theory of propagation of waves in randomly inhomogeneous medium (in Russian). Sov Phys Usp 13(5):551

    Article  Google Scholar 

  • Barabanenkov YuN, Vinogradov AG, Kravtsov YuA, Tatarsky VI (1972) Usage of theory of wave multiple scattering for derivation of the radiative transfer equation for statistically inhomogeneous medium (in Russian). Izv Vyschikh Uch Zav Radiofizika 15(12):1852

    Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer. Oxford University Press

    Google Scholar 

  • Dolginov AZ, Gnedin YuN, Silant’ev NA (1970) Photon polarization and frequency change in multiple scattering. J Quant Spectrosc Rad Trans 10(7):707–754

    Article  ADS  MathSciNet  Google Scholar 

  • Dyson FJ (1949) The radiation theories of Tomonaga, Schwinger, and Feynman. Phys Rev 75:486

    Article  ADS  MathSciNet  Google Scholar 

  • Foldy LL (1945) The multiple scattering of waves, I. General theory of isotropic scattering by randomly distributed scatterers. Phys Rev 67:107–119

    Article  ADS  MathSciNet  Google Scholar 

  • Gnedin YuN, Dolginov AZ (1964) Theory of multiple scattering. JETP 18(3):784

    MathSciNet  Google Scholar 

  • Gnedin YuN, Dolginov AZ (1965) Theory of multiple scattering II. JETP 21(2):364

    ADS  MathSciNet  Google Scholar 

  • Gnedin YuN, Dolginov AZ (1967) Radiative transfer in a finite medium. Soviet Astron 10:637

    ADS  Google Scholar 

  • Gnedin YuN, Dolginov AZ, Silant’ev NA (1970a) Intensity and polarization of radiation multiply scattered by freely oriented particles or medium fluctuations. JETP 30(3):540

    Google Scholar 

  • Gnedin YuN, Dolginov AZ, Silant’ev NA (1970b) (in Russian) JETP 58:319

    Google Scholar 

  • Gnedin YuN, Dolginov AZ, Silant’ev NA (1970c) (in Russian) JETP 10(7):865

    Google Scholar 

  • Kruglov VI (1978) To the theory of oscillatory non-equilibrium radiation of two-atom molecules. Dissertation, Minsk (in Russian)

    Google Scholar 

  • Kuzmina MG (1976) Polarized radiation transport equation in anisotropic media. Preprint of KIAM RAS, 68 (in Russian)

    Google Scholar 

  • Law CW, Watson KM (1970) Radiation transport along curved ray paths. J Math Phys 11:3125–3137

    Article  ADS  Google Scholar 

  • Lax M (1951) Multiple scattering of waves. Rev Modern Phys 23:287–310

    Article  ADS  MathSciNet  Google Scholar 

  • Mandt C, Tsang LD (1992) Backscattering enhancement from a random distribution of large discrete spherical scatterers with a size distribution. J Opt Soc Am A 9(12):2246–2251

    Article  ADS  Google Scholar 

  • Mishchenko MI (2008a) Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation. J Quant Spect Rad Trans 109:2386–2390

    Article  ADS  Google Scholar 

  • Mishchenko MI (2008b) Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev Geophys 46:1–33

    Article  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press

    Google Scholar 

  • Mishchenko MI, Dlugach JM, Yurkin MA, Bi L, Cairns B, Liu L, Panetta RL, Travis LD, Yang P, Zakharova NT (2016) First-principles modeling of electro-magnetic scattering by discrete and discretely heterogeneous random media. Phys Rep 632:1–75

    Article  ADS  MathSciNet  Google Scholar 

  • Newton R (1969) Scattering theory of waves and particles, M, MIR

    Google Scholar 

  • Ovchinnikov GI, Tatarsky VI (1972) To the problem on relation between coherence theory and radiative transfer equation (in Russian). Izv Vyschikch Uch Zav Radiofizika 15(9):1419–1421

    ADS  Google Scholar 

  • Ovchinnikov GI (1974) Radiative transfer equation in visible wave band for turbulent atmosphere containing aerosol (in Russian). Izv AN SSSR, Fizika atm. i okeana 10(1):88–91

    Google Scholar 

  • Salpeter VE, Bether H (1951) A relativistic equation for bound-state problems. Phys Rev 84:1232

    Article  ADS  MathSciNet  Google Scholar 

  • Sazonov VN (1969) The generation and transfer of polarized synchrotron emission (in Russian). Astron Zhurnal 46(3):502–511

    ADS  Google Scholar 

  • Sazonov VN (1974) Radiative transfer in anisotropic medium under the conditions of local thermodynamical equilibrium (in Russian). Astrofizika 10(3):405–416

    ADS  Google Scholar 

  • Silant’ev NA (1971) Dissertation, Leningrad (in Russian)

    Google Scholar 

  • Tsang L, Ishimaru A (1992) Radiative wave equations for vector electromagnetic propagation in demse nontenuous media. J Electromag Waves Appl 1:809–813

    Google Scholar 

  • Tsang L, Kong JA (1992b) Scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow. J Electromag Waves Appl 6(3):265–286

    Article  Google Scholar 

  • Waterman PC, Truell R (1961) Multiple scattering of waves. J Math Phys 2(4):512–537

    Article  ADS  MathSciNet  Google Scholar 

  • Watson KM (1969) Multiple scattering of electromagnetic waves in an underdense plasma. J Math Phys 2(4):688–702

    Article  ADS  Google Scholar 

  • Zheleznyakov VV, Suvorov EV, Shaposhnikov VE (1974) Transfer of polarized radiation in a magnetoactive plasma (in Russian). Astron Zhurnal 51(2):243–251

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita G. Kuzmina .

Editor information

Editors and Affiliations

Supplement

Supplement

Eigenvalues and eigenvectors of the operator \( {\hat{\mathbf{\mathcal{A}}}} ({\mathbf{k}} \to {\mathbf{k}}) \)

Consider first the case of Hermitian matrix \( {\hat{\mathbf{\mathcal{A}}}} ({\mathbf{k}} \to {\mathbf{k}}) \), representing it as

$$ {\hat{\mathbf{\mathcal{A}}}} ({\mathbf{k}} \to {\mathbf{k}}) = \left[ {\begin{array}{*{20}c} {{\mathbf{\mathcal{A}}}_{{{\mathbf{11}}}}^{\prime } } & {{\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime } } \\ {{\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime } } & {{\mathbf{\mathcal{A}}}_{22}^{\prime } } \\ \end{array} } \right] + i\left[ {\begin{array}{*{20}c} 0 & {{\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } } \\ { - {\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } } & 0 \\ \end{array} } \right], $$
(S.1)

where

$$ {\mathbf{\mathcal{A}}}_{\alpha \beta }^{\prime } = {\text{Re}}\,{\mathbf{\mathcal{A}}}_{\alpha \beta } ,\quad {\mathbf{\mathcal{A}}}_{\alpha \beta }^{\prime \prime } ={\text{Im}}\,{\mathbf{\mathcal{A}}}_{\alpha \beta } . $$

The eigenvalues \( {\mathbf{\mathcal{A}}}^{{{\mathbf{(1)}}}} \) and \( {\mathbf{\mathcal{A}}}^{{{\mathbf{(}}2{\mathbf{)}}}} \) of a Hermitian matrix are real values and are the roots of the characteristic polynomial

$$ \lambda^{2} - t\lambda + d, $$

where

$$ t = {\text{Tr}}\,{\hat{\mathbf{\mathcal{A}}}},\quad d ={\text{det}}\,\,{\hat{\mathbf{\mathcal{A}.}}}$$

Put at first \( {\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } = 0 \) (what means from physical viewpoint that non-absorbing non-magnetic anisotropic medium is considered). Then we have the following eigenvalues and and orthonormal eigenvectors of the operator \( {\hat{\mathbf{\mathcal{A}}}} ({\mathbf{k}} \to {\mathbf{k}}) \)

$$ {\mathbf{\mathcal{A}}}^{(1,2)} = \frac{1}{2}\left\{ {\left( {{\mathbf{\mathcal{A}}}_{11}^{{\prime }} + {\mathbf{\mathcal{A}}}_{22}^{{\prime }} } \right) \pm \sqrt {\left( {{\mathbf{\mathcal{A}}}_{11}^{{\prime }} - {\mathbf{\mathcal{A}}}_{22}^{{\prime }} } \right)^{2} + 4{\mathbf{\mathcal{A}}}_{11}^{{{\prime }\,{2}}} } } \right\}, $$
(S.2)
$$ {\mathbf{e}}^{(0)\left( 1 \right)} = \left( {C_{o}^{2} + {\mathbf{\mathcal{A}}}_{12}^{{{\prime }\,\text{2}}} } \right)^{ - 1/2} \left[ {\begin{array}{*{20}l} {{\mathbf{\mathcal{A}}}_{12}^{{\prime }} } \hfill \\ {C_{o} } \hfill \\ \end{array} } \right], $$
(S.3)
$$ {\mathbf{e}}^{(0)\left( 2 \right)} = \left( {C_{o}^{2} + {\mathbf{\mathcal{A}}}_{12}^{{{\prime }\,{2}}} } \right)^{ - 1/2} \left[ {\begin{array}{*{20}l} {C_{o} } \hfill \\ { - {\mathbf{\mathcal{A}}}_{12}^{{\prime }} } \hfill \\ \end{array} } \right]. $$
(S.4)

where

$$ C_{0} = \frac{1}{2}\left\{ { - \left( {{\mathbf{\mathcal{A}}}_{11}^{{\prime }} - {\mathbf{\mathcal{A}}}_{22}^{{\prime }} } \right) + \sqrt {\left( {{\mathbf{\mathcal{A}}}_{11}^{{\prime }} - {\mathbf{\mathcal{A}}}_{22}^{{\prime }} } \right)^{2} + 4{\mathbf{\mathcal{A}}}_{12}^{{{\prime }\,2}} } } \right\}. $$
(S.5)

So, in the anisotropic medium along any direction k two linearly polarized waves in mutually orthogonal polarization states, defined by vectors \( {\mathbf{e}}^{(0)\left( 1 \right)} \) and \( {\mathbf{e}}^{(0)\left( 2 \right)} \), can propagate without absorption with phase velocities \( v_{ph}^{{(\alpha {\mathbf{)}}}} ({\mathbf{k}}){\mathbf{ = }}c/{\mathbf{\mathcal{A}}}^{{{\mathbf{(}}\alpha {\mathbf{)}}}} ({\mathbf{k}}),\,\,\alpha = 1,2. \) Let now \( {\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } \ne 0. \) Then in the basis \( \{ {\mathbf{e}}^{(0)\left( 1 \right)} ,{\mathbf{e}}^{(0)\left( 2 \right)} \} \) the operator can be written as

$$ {\hat{\mathbf{\mathcal{A}}}} ({\mathbf{k}} \to {\mathbf{k}}) = \left[ {\begin{array}{*{20}l} {{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}1}} } & {i{\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } } \\ { - i{\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } } & {{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}2}} } \\ \end{array} } \right]. $$
(S.6)

The eigenvalues and eigenvectors of \( {\hat{\mathbf{\mathcal{A}}}} ({\mathbf{k}} \to {\mathbf{k}}) \) are now defined by the expressions:

$$ {\mathbf{\mathcal{A}}}^{{{\mathbf{(}}1,2{\mathbf{)}}}} = \frac{1}{2}\{ ({\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}1}} + {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}2}} ) \pm \sqrt {\left( {{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}1}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}2}} } \right)^{2} + 4{\mathbf{\mathcal{A}}}_{12}^{{{\prime \prime }\,\text{2}}} } \} , $$
(S.7)
$$ {\mathbf{e}}^{\left( 1 \right)} = \left( {C_{1}^{2} + {\mathbf{\mathcal{A}}}_{12}^{{{\prime \prime }\,2}} } \right)^{ - 1/2} \left[ \begin{aligned} {\mathbf{\mathcal{A}}}_{12}^{{\prime \prime }} \hfill \\ - i\,C_{1} \hfill \\ \end{aligned} \right],\quad {\mathbf{e}}^{\left( 2 \right)} = \left( {C_{1}^{2} + {\mathbf{\mathcal{A}}}_{12}^{{{\prime \prime }\,2}} } \right)^{ - 1/2} \left[ \begin{aligned} C_{1} \hfill \\ - i\,{\mathbf{\mathcal{A}}}_{12}^{{\prime \prime }} \hfill \\ \end{aligned} \right], $$
(S.8)
$$ C_{1}^{{}} = \frac{1}{2}\{ - ({\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}1}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}2}} ) + \sqrt {({\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}1}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}2}} )^{2} + 4{\mathbf{\mathcal{A}}}_{12}^{{{\prime \prime }\,2}} } \} . $$
(S.9)

Therefore in the case of Hermittean and complex-valued \( {\hat{\mathbf{\mathcal{A}}}} (\,{\mathbf{k}} \to {\mathbf{k}}) \) two elliptically polarized waves in mutually opposite polarization states can propagate in anisotropic medium along any direction k without absorption. For these waves the orientations of large axes of polarization ellipse coincide with the directions \( {\mathbf{e}}^{(0)\left( 1 \right)} \) and \( {\mathbf{e}}^{(0)\left( 2 \right)} \). In particular, if \( {\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } \ll {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}1}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}2}} \) we have

$$ {\mathbf{\mathcal{A}}}^{(1,2)} \simeq {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1,2)}} + \frac{{{\mathbf{\mathcal{A}}}_{12}^{\prime \prime } }}{{{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1)}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(2)}} }}, $$
(S.10)
$$ \begin{aligned} {\mathbf{e}}^{\left( 1 \right)} & = \left[ {1 + \left( {\frac{{{\mathbf{\mathcal{A}}}_{12}^{\prime \prime } }}{{{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1)}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(2)}} }}} \right)^{2} } \right]^{ - 1/2} \left[ {\begin{array}{*{20}c} 1 \\ { - i\frac{{{\mathbf{\mathcal{A}}}_{12}^{\prime \prime } }}{{{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1)}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(2)}} }}} \\ \end{array} } \right], \\ {\mathbf{e}}^{\left( 1 \right)} & = \left[ {1 + \left( {\frac{{{\mathbf{\mathcal{A}}}_{12}^{\prime \prime } }}{{{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1)}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(2)}} }}} \right)^{2} } \right]^{ - 1/2} \left[ {\begin{array}{*{20}c} {\frac{{{\mathbf{\mathcal{A}}}_{12}^{\prime \prime } }}{{{\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1)}} - {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(2)}} }}} \\ i \\ \end{array} } \right]. \\ \end{aligned} $$
(S.11)

Therefore, at small value \( {\mathbf{\mathcal{A}}}_{{{\mathbf{12}}}}^{\prime \prime } \) the normal waves are weakly elliptically polarized.

The case \( {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}(1)}} {\mathbf{ = \mathcal{A}}}^{{{\mathbf{(0)}}(2)}} \) corresponds to magneto-optical effect in isotropic medium. Indeed, we have

$$ {\mathbf{\mathcal{A}}}^{(1,2)} \simeq {\mathbf{\mathcal{A}}}^{{{\mathbf{(0)}}}} \pm {\mathbf{\mathcal{A}}}_{12}^{\prime \prime } , $$
(S.12)
$$ {\mathbf{e}}^{{\left( {1,2} \right)}} = 2^{ - 1/2} \left[ \begin{aligned} 1 \hfill \\ \pm i \hfill \\ \end{aligned} \right], $$
(S.13)

and so the circular birefringence takes place in the medium.

In general case the eigenvalues of \( {\hat{\mathbf{\mathcal{A}}}} (\,{\mathbf{k}} \to {\mathbf{k}}) \) are complex-valued, and the eigenvectors are not orthogonal. The normal matrices, satisfying the condition \( {\hat{\mathbf{\mathcal{A}}}}\,{\hat{\mathbf{\mathcal{A}}}}^{{\mathbf{ + }}} { = }{\hat{\mathbf{\mathcal{A}}}}^{{\mathbf{ + }}} {\hat{\mathbf{\mathcal{A}},}} \) possess orthogonal eigenvectors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuzmina, M.G. (2019). Polarized Radiation Transport Equation in Anisotropic Media. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-03445-0_3

Download citation

Publish with us

Policies and ethics