Skip to main content

Effectiveness of NEdT and Band 10 (8.3 μm) of ASTER/TIR on SSST Estimation

  • Conference paper
  • First Online:
Advances in Information and Communication Networks (FICC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 887))

Included in the following conference series:

  • 913 Accesses

Abstract

Effectiveness of Noise Equivalent delta Temperature (NEdT) and Band 10 (8.3 μm) of Advanced Spaceborne Thermal Emission and Reflection Radiometer/Thermal Infrared Radiometer (ASTER/TIR) on SST Estimation is confirmed with MODerate resolution atmospheric TRANsmission (MODTRAN). Also, Skin Sea Surface Temperature (SSSST) estimation accuracy of ASTER/TIR (with and without band 10 (8.3 μm)) is evaluated. Through regressive analysis, it is found that NEdT of noise is quite influence while band 10 is very effective to improve SST estimation for Tropic and Mid-Latitude Summer of atmospheric models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gcmd.nasa.gov/records/GCMD_NAVOCEANO_MCSST.html.

References

  1. NASA: Science and mission requirements Working Report, EOS Science Steering Committee Report, vol. I (1990)

    Google Scholar 

  2. Barton, I.J.: Satellite-derived sea surface temperatures: current status. J. Geophys. Res. 100, 8777–8790 (1995) and Personal correspondence at the 37th COSPAR Congress, Warsaw, Poland, July 2000

    Google Scholar 

  3. Scott, N.A., Chedin, A.: A fast line-by-line method for atmospheric absorption computations: the automatized atmospheric absorption atlas. J. Appl. Meteorol. 20, 802–812 (1981)

    Article  Google Scholar 

  4. Hollinger, J.P.: Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Remote Sens. GE-9(3) (1971)

    Google Scholar 

  5. Cox, C., Munk, W.H.: Some problems in optical oceanography. J. Mar. Res. 14, 68–78 (1955)

    Google Scholar 

  6. Harris, A.R., Brown, O., Mason, M.: The effect of wind speed on sea surface temperature retrieval from space. Geophys. Res. Lett. 21(16), 1715–1718 (1994)

    Article  Google Scholar 

  7. Masuda, K., Takashima, T., Takayama, T.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 24, 313–329 (1988)

    Article  Google Scholar 

  8. Watte, P.D., Allen, M.R., Nightingale, T.J.: Wind speed effect on sea surface emission and reflection for along track scanning radiometer. J. Atmos. Ocean. Technol. 13, 126–141 (1996)

    Article  Google Scholar 

  9. McClain, E.P., Pichel, W.G., Walton, C.C.: Comparative performance of AVHRR based multi-channel sea surface temperatures. J. Geophys. Res. 90(C6), 11587–11601 (1985)

    Google Scholar 

  10. Arai, K., Ono, A., Yamaguchi, Y.: Cross calibration between ASTER/TIR and MODIS-N. In: Proceedings of the EOS Calibration Panel Workshop, pp. 1–8 (1992)

    Google Scholar 

  11. Arai, K.: A method for sea surface temperature retrieval with ASTER/TIR. In: Proceedings of IGARSS 1994, pp. 253–254 (1994)

    Google Scholar 

  12. Kneizys, F.X. et al.: User’s guide to LOWTRAN 7, AFGL-TR-88-0137, AFGL (American Airforce Geophysical Laboratory), Hanscom, MA (1988)

    Google Scholar 

  13. Matsunaga, T.: Water surface temperature estimation using linear equation of observed brightness temperature of ASTERTIR. J. Jpn. Remote Sens. Soc. 16(5), 2–13 (1996)

    Google Scholar 

  14. Ukaoka, H., Rikawa, S.: Simultaneous estimation method of atmospheric correction parameter, ground surface temperature, spectral emissivity using thermal infrared multiple spectroscopic scanner. J. Jpn. Remote Sens. Soc. 17(2), 19–33 (1997)

    Google Scholar 

  15. AFGL, MODTRAN 3 users instructions, GLTR-89-0122 (1996)

    Google Scholar 

  16. Cox, C., Munk, W.: Measurements of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am. 44, 938–950 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arai, K. (2019). Effectiveness of NEdT and Band 10 (8.3 μm) of ASTER/TIR on SSST Estimation. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication Networks. FICC 2018. Advances in Intelligent Systems and Computing, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-030-03405-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03405-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03404-7

  • Online ISBN: 978-3-030-03405-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics