We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Sobolev Spaces | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Sobolev Spaces

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Distributions, Partial Differential Equations, and Harmonic Analysis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 2753 Accesses

Abstract

While Lebesgue spaces play a most basic role in analysis, it is highly desirable to consider a scale of spaces which contains provisions for quantifying smoothness (measured in a suitable sense). This is the key feature of the so-called Sobolev spaces, introduced and studied at some length in this chapter in a completely self-contained manner. The starting point is the treatment of global \(L^2\)-based Sobolev spaces of arbitrary smoothness in the entire Euclidean space, using the Fourier transform as the main tool. We then proceed to define Sobolev spaces in arbitrary open sets, both via restriction (which permits the consideration of arbitrary amounts of smoothness) and in an intrinsic fashion (for integer amounts of smoothness, demanding that distributional derivatives up to a certain order are square-integrable in the respective open set). When the underlying set is a bounded Lipschitz domain, both these brands of Sobolev spaces (defined intrinsically and via restriction) coincide for an integer amount of smoothness. A key role in the proof of this result is played by Calderón’s extension operator, mapping functions originally defined in the said Lipschitz domain to the entire Euclidean ambient with preservation of Sobolev class. Finally, the fractional Sobolev space of order 1 / 2 is defined on the boundary of a Lipschitz domain as the space of square-integrable functions satisfying a finiteness condition involving a suitable Gagliardo–Slobodeckij semi-norm. This is then linked to Sobolev spaces in Lipschitz domains via trace and extension results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorina Mitrea .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitrea, D. (2018). Sobolev Spaces. In: Distributions, Partial Differential Equations, and Harmonic Analysis. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-030-03296-8_12

Download citation

Publish with us

Policies and ethics