Skip to main content

Immune System Regulation of Muscle Injury and Disease

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

Muscular dystrophy and inflammatory myopathy are muscle diseases that despite their etiological differences share many pathological features, including muscle degeneration, loss of function, and chronic inflammation. Immunological processes induced by muscle injury contribute to the pathology of various muscular dystrophies, whereas autoimmune responses specific for yet undefined muscle antigens are suspected to be the cause of some idiopathic inflammatory myopathies. This chapter discusses the role of the immune system in eliciting immunity and regulating inflammatory responses during acute injury and muscle degenerative diseases. Duchenne muscular dystrophy (DMD) is the most prevalent form of muscular dystrophy. Using DMD as an example, we discuss the role of immune system in the pathogenesis of muscle disease. In addition to the role of innate immunity, we review the literature supporting the elicitation of antigen-specific, adaptive immune responses in DMD, including those specific for dystrophin. We discuss the clinical implications of these adaptive immune responses and their potential in limiting the efficacy of dystrophin gene therapy. Last, we highlight therapeutic approaches that may be used to inhibit degenerative muscle inflammation and to tolerize DMD patients to the protein product of dystrophin gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shackelford LC (2008) Musculoskeletal response to space flight. In: Principles of clinical medicine for space flight, pp 293–306. https://doi.org/10.1007/978-0-387-68164-1_14

    Chapter  Google Scholar 

  2. Jarvinen TAH (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764. https://doi.org/10.1177/0363546505274714

    Article  PubMed  Google Scholar 

  3. Page P (1995) Pathophysiology of acute exercise-induced muscular injury: clinical implications. J Athl Train 30:29–34

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mann CJ, Perdiguero E, Kharraz Y et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21. https://doi.org/10.1186/2044-5040-1-21

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rayavarapu S, Coley W, Kinder TB, Nagaraju K (2013) Idiopathic inflammatory myopathies: pathogenic mechanisms of muscle weakness. Skelet Muscle 3:13. https://doi.org/10.1186/2044-5040-3-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu H, Huang D, Ransohoff RM, Zhou L (2011) Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J 25:3344–3355. https://doi.org/10.1096/fj.10-178939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen HX, Tidball JG (2003) Null mutation of gp91phox reduces muscle membrane lysis during muscle inflammation in mice. J Physiol 553:833–841. https://doi.org/10.1113/jphysiol.2003.051912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pizza FX, Peterson JM, Baas JH, Koh TJ (2005) Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 562:899–913. https://doi.org/10.1113/jphysiol.2004.073965

    Article  CAS  PubMed  Google Scholar 

  9. Swirski FK, Nahrendorf M, Etzrodt M et al (2010) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616. https://doi.org/10.1126/science.1175202.Identification

    Article  Google Scholar 

  10. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:345–353. https://doi.org/10.1152/ajpregu.00454.2004

    Article  Google Scholar 

  11. Arnold L, Henry A, Poron F et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069. https://doi.org/10.1084/jem.20070075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen HX, Tidball JG (2002) Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. J Physiol 547:125–132. https://doi.org/10.1113/jphysiol.2002.031450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. https://doi.org/10.1172/JCI59643DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burzyn D, Kuswanto W, Kolodin D et al (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295. https://doi.org/10.1016/j.cell.2013.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng B, Wehling-Henricks M, Villalta SA et al (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680. https://doi.org/10.4049/jimmunol.1103180

    Article  CAS  PubMed  Google Scholar 

  16. Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578:327–336. https://doi.org/10.1113/jphysiol.2006.118265

    Article  CAS  PubMed  Google Scholar 

  17. Mounier RM, Théret M, Arnold L et al (2013) AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18:251–264. https://doi.org/10.1016/j.cmet.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  18. Hammers DW, Rybalko V, Merscham-Banda M et al (2015) Anti-inflammatory macrophages improve skeletal muscle recovery from ischemia-reperfusion. J Appl Physiol 118:1067–1074. https://doi.org/10.1152/japplphysiol.00313.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. https://doi.org/10.1146/annurev.immunol.021908.132532

    Article  CAS  PubMed  Google Scholar 

  20. Varga T, Mounier RM, Patsalos A et al (2016) Macrophage PPARγ, a lipid activated transcription factor controls the growth factor GDF3 and skeletal muscle regeneration. Immunity 45:1038–1051. https://doi.org/10.1016/j.immuni.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Musarò A, Giacinti C, Borsellino G et al (2004) Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci 101:1206–1210. https://doi.org/10.1073/pnas.0303792101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tonkin J, Temmerman L, Sampson RD et al (2016) Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther 23:1189–1200. https://doi.org/10.1038/mt.2015.66

    Article  CAS  Google Scholar 

  23. Lu H, Huang D, Saederup N et al (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25:358–369. https://doi.org/10.1096/fj.10-171579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brigitte M, Schilte C, Plonquet A et al (2010) Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 62:268–279. https://doi.org/10.1002/art.27183

    Article  CAS  PubMed  Google Scholar 

  25. Zhao W, Lu H, Wang X et al (2016) CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J 30:380–393. https://doi.org/10.1096/fj.14-270090

    Article  CAS  PubMed  Google Scholar 

  26. Kohno S, Ueji T, Abe T et al (2011) Rantes secreted from macrophages disturbs skeletal muscle regeneration after cardiotoxin injection in Cbl-b-deficient mice. Muscle Nerve 43:223–229. https://doi.org/10.1002/mus.21829

    Article  CAS  PubMed  Google Scholar 

  27. Alam R, Stafford S, Forsythe P et al (1993) RANTES is a chemotactic and activating factor for human eosinophils. J Immunol 150:3442–3448

    CAS  PubMed  Google Scholar 

  28. Heredia JE, Mukundan L, Chen FM et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388. https://doi.org/10.1016/j.cell.2013.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castiglioni A, Corna G, Rigamonti E et al (2015) FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One 10:1–18. https://doi.org/10.1371/journal.pone.0128094

    Article  CAS  Google Scholar 

  30. Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman EP, Brown RHJ, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  32. Moat SJ, Bradley DM, Salmon R et al (2013) Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet 21:1049–1053. https://doi.org/10.1038/ejhg.2012.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mendell JR, Shilling C, Leslie ND et al (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313. https://doi.org/10.1002/ana.23528

    Article  CAS  PubMed  Google Scholar 

  34. Petrof BJ, Shrager JB, Stedman HH et al (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spencer MJ, Tidball JG (2001) Do immune cells promote the pathology of dystrophin-deficient myopathies? Neuromuscul Disord 11:556–564

    Article  CAS  PubMed  Google Scholar 

  36. Dadgar S, Wang Z, Johnston H et al (2014) Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol 207:139–158. https://doi.org/10.1083/jcb.201402079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lundberg I, Brengman JM, Engel AG (1995) Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. J Neuroimmunol 63:9–16

    Article  CAS  PubMed  Google Scholar 

  38. Haslett JN, Sanoudou D, Kho AT et al (2002) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A 99:15000–15005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McDouall RM, Dunn MJ, Dubowitz V (1990) Nature of the mononuclear infiltrate and the mechanism of muscle damage in juvenile dermatomyositis and Duchenne muscular dystrophy. J Neurol Sci 99:199–217

    Article  CAS  PubMed  Google Scholar 

  40. Pescatori M, Broccolini A, Minetti C et al (2007) Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 21:1210–1226

    Article  CAS  PubMed  Google Scholar 

  41. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335:2–13. https://doi.org/10.1016/j.mce.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schakman O, Kalista S, Barbé C et al (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45:2163–2172. https://doi.org/10.1016/j.biocel.2013.05.036

    Article  CAS  PubMed  Google Scholar 

  43. Wehling-Henricks M, Lee JJ, Tidball JG (2004) Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul Disord 14:483–490

    Article  PubMed  Google Scholar 

  44. Cai B, Spencer MJ, Nakamura G et al (2000) Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors. Am J Pathol 156:1789–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98:235–243

    Article  CAS  PubMed  Google Scholar 

  46. Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madaro L, Bouche M (2014) From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: the role of lymphocytes. Biomed Res Int 2014:1–23. https://doi.org/10.1155/2014/438675

    Article  CAS  Google Scholar 

  48. De Paepe B, De Bleecker JL (2013) Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy. Mediat Inflamm 2013:1–10. https://doi.org/10.1155/2013/540370

    Article  CAS  Google Scholar 

  49. Rosenberg AS, Puig M, Nagaraju K et al (2015) Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med 7:299rv4. https://doi.org/10.1126/scitranslmed.aaa7322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tidball JG (2017) Regulation of muscle growth and regeneration by the immune system. Nat Publ Group 17:165–178. https://doi.org/10.1038/nri.2016.150

    Article  CAS  Google Scholar 

  51. Villalta SA, Rosenberg AS, Bluestone JA (2015) The immune system in Duchenne muscular dystrophy: friend or foe. Rare Dis 3:e1010966. https://doi.org/10.1080/21675511.2015.1010966

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  53. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villalta SA, Nguyen HX, Deng B et al (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18:482–496

    Article  CAS  PubMed  Google Scholar 

  55. Yang-Snyder JA, Rothenberg EV (1998) Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Dev Immunol 5:223–245. https://doi.org/10.1155/1998/12421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479. https://doi.org/10.1146/annurev.immunol.26.021607.090357

    Article  CAS  PubMed  Google Scholar 

  57. Granucci F, Vizzardelli C, Pavelka N et al (2001) Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2:882–888. https://doi.org/10.1038/ni0901-882

    Article  CAS  PubMed  Google Scholar 

  58. Burchill MA, Yang J, Vogtenhuber C et al (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

    Article  CAS  PubMed  Google Scholar 

  59. Klatzmann D, Abbas AK (2015) The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 15:283–294. https://doi.org/10.1038/nri3823

    Article  CAS  PubMed  Google Scholar 

  60. Villalta SA, Rosenthal W, Martinez L et al (2014) Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 6:258ra142. https://doi.org/10.1126/scitranslmed.3009925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vercoulen Y, Enders FB, Meerding J et al (2014) Increased presence of FOXP3+ regulatory T cells in inflamed muscle of patients with active juvenile dermatomyositis compared to peripheral blood. PLoS One 9:e105353. https://doi.org/10.1371/journal.pone.0105353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Antiga E, Kretz CC, Klembt R et al (2010) Characterization of regulatory T cells in patients with dermatomyositis. J Autoimmun 35:342–350. https://doi.org/10.1016/j.jaut.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  63. Vetrone SA, Montecino-Rodriguez E, Kudryashova E et al (2009) Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 119:1583–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tiemessen MM, Jagger AL, Evans HG et al (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104:19446–19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Villalta SA, Rinaldi C, Deng B et al (2011) Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 20:790–805

    Article  CAS  PubMed  Google Scholar 

  66. Nitahara-Kasahara Y, Hayashita-Kinoh H, Chiyo T et al (2014) Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet 23:3990–4000. https://doi.org/10.1093/hmg/ddu113

    Article  CAS  PubMed  Google Scholar 

  67. Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353. https://doi.org/10.1038/ni.3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lagrota-Candido J, Vasconcellos R, Cavalcanti M et al (2002) Resolution of skeletal muscle inflammation in mdx dystrophic mouse is accompanied by increased immunoglobulin and interferon-γ production. Int J Exp Pathol 83:121–132. https://doi.org/10.1046/j.1365-2613.2002.00221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Farini A, Sitzia C, Cassani B et al (2016) Therapeutic potential of immunoproteasome inhibition in Duchenne muscular dystrophy. Mol Ther 24:1898–1912. https://doi.org/10.1038/mt.2016.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferraccioli G, Tolusso B (2007) Infections, B cell receptor activation and autoimmunity: different check-point impairments lead to autoimmunity, clonal B cell expansion and fibrosis in different immunological settings. Autoimmun Rev 7:109–113. https://doi.org/10.1016/j.autrev.2007.02.013

    Article  CAS  PubMed  Google Scholar 

  73. Denizot F, Wilson A, Battye F et al (1986) Clonal expansion of T cells: a cytotoxic T-cell response in vivo that involves precursor cell proliferation. Proc Natl Acad Sci 83:6089–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gussoni E, Pavlath GK, Miller RG et al (1994) Specific T cell receptor gene rearrangements at the site of muscle degeneration in Duchenne muscular dystrophy. J Immunol 153:4798–4805

    CAS  PubMed  Google Scholar 

  75. Eghtesad S, Zheng H, Nakai H et al (2010) Effects of irradiating adult mdx mice before full-length dystrophin cDNA transfer on host anti-dystrophin immunity. Gene Ther 17:1181–1190. https://doi.org/10.1038/gt.2010.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Flanigan KM, Campbell K, Viollet L et al (2013) Anti-dystrophin T cell responses in Duchenne muscular dystrophy: prevalence and a glucocorticoid treatment effect. Hum Gene Ther 24:797. https://doi.org/10.1089/hgtb.2013.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mendell JR, Campbell K, Rodino-Klapac L et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arahata K, Engel AG (1988) Monoclonal antibody analysis of mononuclear cells in myopathies. IV: cell-mediated cytotoxicity and muscle fiber necrosis. Ann Neurol 23:168–173

    Article  CAS  PubMed  Google Scholar 

  79. Arahata K, Engel AG (1984) Monoclonal antibody analysis of mononuclear cells in myopathies. I: quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann Neurol 16:193–208. https://doi.org/10.1002/ana.410160206

    Article  CAS  PubMed  Google Scholar 

  80. Spencer MJ, Walsh CM, Dorshkind KA et al (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 99:2745–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Allenbach Y, Chaara W, Rosenzwajg M et al (2014) Th1 response and systemic Treg deficiency in inclusion body myositis. PLoS One 9:e88788. https://doi.org/10.1371/journal.pone.0088788

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pandya JM, Fasth AER, Zong M et al (2010) Expanded T cell receptor Vβ-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum 62:3457–3466. https://doi.org/10.1002/art.27665

    Article  CAS  PubMed  Google Scholar 

  83. Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 134:17–32. https://doi.org/10.1111/j.1365-2567.2011.03470.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Greenberg SA, Pinkus JL, Amato AA et al (2016) Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain J Neurol 139:1348–1360. https://doi.org/10.1093/brain/aww024

    Article  Google Scholar 

  85. Suurmond J, Diamond B (2015) Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. J Clin Invest 125:2194–2202. https://doi.org/10.1172/JCI78084

    Article  PubMed  PubMed Central  Google Scholar 

  86. Larman HB, Salajegheh M, Nazareno R et al (2013) Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 73:408–418. https://doi.org/10.1002/ana.23840

    Article  CAS  PubMed  Google Scholar 

  87. Goyal NA, Cash TM, Alam U et al (2016) Seropositivity for NT5c1A antibody in sporadic inclusion body myositis predicts more severe motor, bulbar and respiratory involvement. J Neurol Neurosurg Psychiatry 87:373–378. https://doi.org/10.1136/jnnp-2014-310008

    Article  CAS  PubMed  Google Scholar 

  88. Lilleker JB, Rietveld A, Pye SR et al (2017) Cytosolic 5′-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Ann Rheum Dis 76:862–868. https://doi.org/10.1136/annrheumdis-2016-210282

    Article  CAS  PubMed  Google Scholar 

  89. Frisullo G, Frusciante R, Nociti V et al (2011) CD8(+) T cells in facioscapulohumeral muscular dystrophy patients with inflammatory features at muscle MRI. J Clin Immunol 31:155–166. https://doi.org/10.1007/s10875-010-9474-6

    Article  CAS  PubMed  Google Scholar 

  90. Raju R, Dalakas MC (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128:1887–1896. https://doi.org/10.1093/brain/awh518

    Article  PubMed  Google Scholar 

  91. Raju R, Vasconcelos O, Granger R, Dalakas MC (2003) Expression of IFN-γ-inducible chemokines in inclusion body myositis. J Neuroimmunol 141:125–131. https://doi.org/10.1016/S0165-5728(03)00218-2

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt J, Barthel K, Wrede A et al (2008) Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain 131:1228–1240

    Article  PubMed  PubMed Central  Google Scholar 

  93. Banica L, Besliu A, Pistol G et al (2009) Quantification and molecular characterization of regulatory T cells in connective tissue diseases. Autoimmunity 42:41–49. https://doi.org/10.1080/08916930802282651

    Article  CAS  PubMed  Google Scholar 

  94. Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34:566–578. https://doi.org/10.1016/j.immuni.2011.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wan YY, Flavell RA (2007) “Yin-Yang” functions of TGF-β and Tregs in immune regulation. Immunol Rev 220:199–213. https://doi.org/10.1111/j.1600-065X.2007.00565.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baldwin AS (2001) Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107:3–6. https://doi.org/10.1172/JCI11891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Acharyya S, Villalta SA, Bakkar N et al (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun CC, Li SJ, Yang CL et al (2015) Sulforaphane attenuates muscle inflammation in dystrophin-deficient mdx mice via NF-E2-related factor 2 (Nrf2)-mediated inhibition of NF-κB signaling pathway. J Biol Chem 290:17784–17795. https://doi.org/10.1074/jbc.M115.655019

    Article  CAS  PubMed  Google Scholar 

  99. Heier CR, Damsker JM, Yu Q et al (2013) VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 5:1569–1585. https://doi.org/10.1002/emmm.201302621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oakley R, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanism in health and disease. J Allergy Clin Inmunol 132:1033–1044. https://doi.org/10.1016/j.jaci.2013.09.007.The

    Article  CAS  Google Scholar 

  101. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280:4131–4148. https://doi.org/10.1111/febs.12338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Collins RA, Grounds MD (2001) The role of tumor necrosis factor-alpha (TNF-alpha) in skeletal muscle regeneration. Studies in TNF-alpha(-/-) and TNF-alpha(-/-)/LT-alpha(-/-) mice. J Histochem Cytochem 49:989–1001. https://doi.org/10.1177/002215540104900807

    Article  CAS  PubMed  Google Scholar 

  103. Piers AT, Lavin T, Radley-Crabb HG et al (2011) Blockade of TNF in vivo using cV1q antibody reduces contractile dysfunction of skeletal muscle in response to eccentric exercise in dystrophic mdx and normal mice. Neuromuscul Disord 21:132–141. https://doi.org/10.1016/j.nmd.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  104. Keating GM, Perry CM, Farrell RJ et al (2002) Infliximab: an updated review of its use in Crohn’s disease and rheumatoid arthritis. BioDrugs 16:111–148

    Article  CAS  PubMed  Google Scholar 

  105. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16:448–457. https://doi.org/10.1038/ni.3153

    Article  CAS  PubMed  Google Scholar 

  106. Rose-John S (2012) Il-6 trans-signaling via the soluble IL-6 receptor: importance for the proinflammatory activities of IL-6. Int J Biol Sci 8:1237–1247. https://doi.org/10.7150/ijbs.4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3. https://doi.org/10.1186/ar1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mammen AL, Sartorelli V (2015) IL-6 blockade as a therapeutic approach for Duchenne muscular dystrophy. EBioMedicine 2:274–275. https://doi.org/10.1016/j.ebiom.2015.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pelosi L, Berardinelli MG, De Pasquale L et al (2015) Functional and morphological improvement of dystrophic muscle by interleukin 6 receptor blockade. EBioMedicine 2:285–293. https://doi.org/10.1016/j.ebiom.2015.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kostek MC, Nagaraju K, Pistilli E et al (2012) IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse. BMC Musculoskelet Disord 13:106. https://doi.org/10.1186/1471-2474-13-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gazzerro E, Baldassari S, Assereto S et al (2015) Enhancement of muscle T regulatory cells and improvement of muscular dystrophic process in mdx mice by blockade of extracellular ATP/P2X axis. Am J Pathol 185:3349–3360. https://doi.org/10.1016/j.ajpath.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  112. Eghtesad S, Jhunjhunwala S, Little SR, Clemens PR (2011) Rapamycin ameliorates dystrophic phenotype in mdx mouse skeletal muscle. Mol Med 17:917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bodine SC, Stitt TN, Gonzalez M et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019. https://doi.org/10.1038/ncb1101-1014

    Article  CAS  PubMed  Google Scholar 

  114. Eghtesad S, Jhunjhunwala S, Little SR, Clemens PR (2012) Effect of rapamycin on immunity induced by vector-mediated dystrophin expression in mdx skeletal muscle. Sci Rep 2:399. https://doi.org/10.1038/srep00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Armando Villalta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kastenschmidt, J.M., Mannaa, A.H., Muñoz, K.J., Villalta, S.A. (2019). Immune System Regulation of Muscle Injury and Disease. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_7

Download citation

Publish with us

Policies and ethics