Skip to main content

Gene Therapy for Facioscapulohumeral Muscular Dystrophy (FSHD)

  • Chapter
  • First Online:

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is a relatively common myopathy affecting 1/8500–15,000 individuals. FSHD is caused by inappropriate expression of the transcription factor double homeobox protein 4 (DUX4) so gene therapies must either prevent expression of DUX4 or interrupt the pathogenic downstream effectors of DUX4. The autosomal dominant inheritance pattern and the fact that the primary pathology is limited to multinucleate muscle fibers make gene therapies a challenging prospect for this important dystrophy without a treatment. Genetic correction of even a large percentage of myonuclei may not be sufficient to produce a phenotypic change in the setting of multinucleate myofibers when the disease is caused by a dominant-negative mechanism. In this chapter, I outline what is known about the molecular pathology of FSHD and discuss several gene therapy approaches to interrupting the cycle of DUX4 expression and muscle cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deenen JC, Arnts H, van der Maarel SM, Padberg GW, Verschuuren JJ, Bakker E, Weinreich SS, Verbeek AL, van Engelen BG (2014) Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 83(12):1056–1059. https://doi.org/10.1212/WNL.0000000000000797

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, Snider L, Straasheijm KR, van Ommen GJ, Padberg GW, Miller DG, Tapscott SJ, Tawil R, Frants RR, van der Maarel SM (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329(5999):1650–1653. https://doi.org/10.1126/science.1189044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gabriels J, Beckers MC, Ding H, De Vriese A, Plaisance S, van der Maarel SM, Padberg GW, Frants RR, Hewitt JE, Collen D, Belayew A (1999) Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236(1):25–32

    Article  CAS  Google Scholar 

  4. Wright TJ, Wijmenga C, Clark LN, Frants RR, Williamson R, Hewitt JE (1993) Fine mapping of the FSHD gene region orientates the rearranged fragment detected by the probe p13E-11. Hum Mol Genet 2(10):1673–1678

    Article  CAS  Google Scholar 

  5. Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, Wijmenga C, van Deutekom JC, Francis F, Sharpe PT, Hofker M et al (1994) Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. Hum Mol Genet 3(8):1287–1295

    Article  CAS  Google Scholar 

  6. van Deutekom JC, Wijmenga C, van Tienhoven EA, Gruter AM, Hewitt JE, Padberg GW, van Ommen GJ, Hofker MH, Frants RR (1993) FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2(12):2037–2042

    Article  Google Scholar 

  7. Lemmers RJ, Tawil R, Petek LM, Balog J, Block GJ, Santen GW, Amell AM, van der Vliet PJ, Almomani R, Straasheijm KR, Krom YD, Klooster R, Sun Y, den Dunnen JT, Helmer Q, Donlin-Smith CM, Padberg GW, van Engelen BG, de Greef JC, Aartsma-Rus AM, Frants RR, de Visser M, Desnuelle C, Sacconi S, Filippova GN, Bakker B, Bamshad MJ, Tapscott SJ, Miller DG, van der Maarel SM (2012) Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44(12):1370–1374. https://doi.org/10.1038/ng.2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, Miller DG (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6(10):e1001181. https://doi.org/10.1371/journal.pgen.1001181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haynes P, Bomsztyk K, Miller DG (2018) Sporadic DUX4 expression in FSHD myocytes is associated with incomplete repression by the PRC2 complex and gain of H3K9 acetylation on the contracted D4Z4 allele. Epigenetics & Chromatin 11(1)

    Google Scholar 

  10. Jones TI, Chen JC, Rahimov F, Homma S, Arashiro P, Beermann ML, King OD, Miller JB, Kunkel LM, Emerson CP Jr, Wagner KR, Jones PL (2012) Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum Mol Genet 21(20):4419–4430. https://doi.org/10.1093/hmg/dds284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rickard AM, Petek LM, Miller DG (2015) Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Hum Mol Genet 24(20):5901–5914. https://doi.org/10.1093/hmg/ddv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lemmers RJ, Wohlgemuth M, Frants RR, Padberg GW, Morava E, van der Maarel SM (2004) Contractions of D4Z4 on 4qB subtelomeres do not cause facioscapulohumeral muscular dystrophy. Am J Hum Genet 75(6):1124–1130

    Article  CAS  Google Scholar 

  13. Lemmers RJ, Wohlgemuth M, van der Gaag KJ, van der Vliet PJ, van Teijlingen CM, de Knijff P, Padberg GW, Frants RR, van der Maarel SM (2007) Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy. Am J Hum Genet 81(5):884–894. https://doi.org/10.1086/521986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Block GJ, Narayanan D, Amell AM, Petek LM, Davidson KC, Bird TD, Tawil R, Moon RT, Miller DG (2013) Wnt/beta-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells. Hum Mol Genet 22(23):4661–4672. https://doi.org/10.1093/hmg/ddt314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Geel M, Dickson MC, Beck AF, Bolland DJ, Frants RR, van der Maarel SM, de Jong PJ, Hewitt JE (2002) Genomic analysis of human chromosome 10q and 4q telomeres suggests a common origin. Genomics 79(2):210–217

    Article  Google Scholar 

  16. Clapp J, Mitchell LM, Bolland DJ, Fantes J, Corcoran AE, Scotting PJ, Armour JA, Hewitt JE (2007) Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet 81(2):264–279

    Article  CAS  Google Scholar 

  17. Leidenroth A, Hewitt JE (2010) A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene. BMC Evol Biol 10:364. https://doi.org/10.1186/1471-2148-10-364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, van der Maarel SM, Ruzzo WL, Gentleman RC, Tawil R, Tapscott SJ (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22(1):38–51. https://doi.org/10.1016/j.devcel.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  19. Krom YD, Thijssen PE, Young JM, den Hamer B, Balog J, Yao Z, Maves L, Snider L, Knopp P, Zammit PS, Rijkers T, van Engelen BG, Padberg GW, Frants RR, Tawil R, Tapscott SJ, van der Maarel SM (2013) Intrinsic epigenetic regulation of the D4Z4 macrosatellite repeat in a transgenic mouse model for FSHD. PLoS Genet 9(4):e1003415. https://doi.org/10.1371/journal.pgen.1003415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma V, Harafuji N, Belayew A, Chen YW (2013) DUX4 differentially regulates transcriptomes of human Rhabdomyosarcoma and mouse C2C12 cells. PLoS One 8(5):e64691. https://doi.org/10.1371/journal.pone.0064691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eidahl JO, Giesige CR, Domire JS, Wallace LM, Fowler AM, Guckes SM, Garwick-Coppens SE, Labhart P, Harper SQ (2016) Mouse Dux is myotoxic and shares partial functional homology with its human paralog DUX4. Hum Mol Genet 25(20):4577–4589. https://doi.org/10.1093/hmg/ddw287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Lee JK, Toso EA, Lee JS, Choi SH, Slattery M, Aihara H, Kyba M (2016) DNA-binding sequence specificity of DUX4. Skelet Muscle 6:8. https://doi.org/10.1186/s13395-016-0080-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bosnakovski D, Xu Z, Gang EJ, Galindo CL, Liu M, Simsek T, Garner HR, Agha-Mohammadi S, Tassin A, Coppee F, Belayew A, Perlingeiro RR, Kyba M (2008) An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J 27(20):2766–2779. https://doi.org/10.1038/emboj.2008.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosnakovski D, Daughters RS, Xu Z, Slack JM, Kyba M (2009) Biphasic myopathic phenotype of mouse DUX, an ORF within conserved FSHD-related repeats. PLoS One 4(9):e7003. https://doi.org/10.1371/journal.pone.0007003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dandapat A, Bosnakovski D, Hartweck LM, Arpke RW, Baltgalvis KA, Vang D, Baik J, Darabi R, Perlingeiro RC, Hamra FK, Gupta K, Lowe DA, Kyba M (2014) Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene. Cell Rep 8(5):1484–1496. https://doi.org/10.1016/j.celrep.2014.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dandapat A, Perrin BJ, Cabelka C, Razzoli M, Ervasti JM, Bartolomucci A, Lowe DA, Kyba M (2016) High frequency hearing loss and hyperactivity in DUX4 transgenic mice. PLoS One 11(3):e0151467. https://doi.org/10.1371/journal.pone.0151467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitsuhashi H, Mitsuhashi S, Lynn-Jones T, Kawahara G, Kunkel LM (2013) Expression of DUX4 in zebrafish development recapitulates facioscapulohumeral muscular dystrophy. Hum Mol Genet 22(3):568–577. https://doi.org/10.1093/hmg/dds467

    Article  CAS  PubMed  Google Scholar 

  28. Lek A, Rahimov F, Jones PL, Kunkel LM (2015) Emerging preclinical animal models for FSHD. Trends Mol Med 21(5):295–306. https://doi.org/10.1016/j.molmed.2015.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, Guttridge D, Yang J, Harper SQ (2011) DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 69(3):540–552. https://doi.org/10.1002/ana.22275

    Article  CAS  PubMed  Google Scholar 

  30. Wallace LM, Garwick-Coppens SE, Tupler R, Harper SQ (2011) RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1). Mol Ther 19(11):2048–2054. https://doi.org/10.1038/mt.2011.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Snider L, Asawachaicharn A, Tyler AE, Geng LN, Petek LM, Maves L, Miller DG, Lemmers RJ, Winokur ST, Tawil R, van der Maarel SM, Filippova GN, Tapscott SJ (2009) RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: new candidates for the pathophysiology of facioscapulohumeral dystrophy. Hum Mol Genet 18(13):2414–2430. https://doi.org/10.1093/hmg/ddp180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petek LM, Rickard AM, Budech C, Poliachik SL, Shaw D, Ferguson MR, Tawil R, Friedman SD, Miller DG (2016) A cross sectional study of two independent cohorts identifies serum biomarkers for facioscapulohumeral muscular dystrophy (FSHD). Neuromuscul Disord 26(7):405–413. https://doi.org/10.1016/j.nmd.2016.04.012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yao Z, Snider L, Balog J, Lemmers RJ, Van Der Maarel SM, Tawil R, Tapscott SJ (2014) DUX4-induced gene expression is the major molecular signature in FSHD skeletal muscle. Hum Mol Genet 23(20):5342–5352. https://doi.org/10.1093/hmg/ddu251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bortolanza S, Nonis A, Sanvito F, Maciotta S, Sitia G, Wei J, Torrente Y, Di Serio C, Chamberlain JR, Gabellini D (2011) AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol Ther 19(11):2055–2064. https://doi.org/10.1038/mt.2011.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, Chamberlain JS (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10(8):828–834

    Article  CAS  Google Scholar 

  36. Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin JH, Yang HT, McDonald T, Duan D (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890. https://doi.org/10.1093/hmg/ddv310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97(25):13714–13719. https://doi.org/10.1073/pnas.240335297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghosh A, Yue Y, Long C, Bostick B, Duan D (2007) Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15(4):750–755. https://doi.org/10.1038/sj.mt.6300081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Das S, Chadwick BP (2016) Influence of repressive histone and DNA methylation upon D4Z4 transcription in non-myogenic cells. PLoS One 11(7):e0160022. https://doi.org/10.1371/journal.pone.0160022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S, Kole R (1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 9(5):330–338

    Article  CAS  Google Scholar 

  41. Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S, Morgan JE, Partridge TA, Wilton SD (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci U S A 98(1):42–47. https://doi.org/10.1073/pnas.011408598

    Article  CAS  PubMed  Google Scholar 

  42. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robinson-Hamm JN, Gersbach CA (2016) Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 135(9):1029–1040. https://doi.org/10.1007/s00439-016-1725-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lyle R, Wright TJ, Clark LN, Hewitt JE (1995) The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes. Genomics 28(3):389–397

    Article  CAS  Google Scholar 

  45. Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641. https://doi.org/10.1038/nrg.2016.93

    Article  CAS  PubMed  Google Scholar 

  46. Himeda CL, Debarnot C, Homma S, Beermann ML, Miller JB, Jones PL, Jones TI (2014) Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Mol Cell Biol 34(11):1942–1955. https://doi.org/10.1128/MCB.00149-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lim JW, Snider L, Yao Z, Tawil R, Van Der Maarel SM, Rigo F, Bennett CF, Filippova GN, Tapscott SJ (2015) DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum Mol Genet 24(17):4817–4828. https://doi.org/10.1093/hmg/ddv206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149(4):819–831. https://doi.org/10.1016/j.cell.2012.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wallace LM, Liu J, Domire JS, Garwick-Coppens SE, Guckes SM, Mendell JR, Flanigan KM, Harper SQ (2012) RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther 20(7):1417–1423. https://doi.org/10.1038/mt.2012.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149. https://doi.org/10.1038/nmeth.3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Himeda CL, Jones TI, Jones PL (2016) Scalpel or straitjacket: CRISPR/Cas9 approaches for muscular dystrophies. Trends Pharmacol Sci 37(4):249–251. https://doi.org/10.1016/j.tips.2016.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Himeda CL, Jones TI, Jones PL (2016) CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic Dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol Ther 24(3):527–535. https://doi.org/10.1038/mt.2015.200

    Article  CAS  PubMed  Google Scholar 

  53. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS (2017) In vivo genome editing with a small Cas9 orthologue derived from campylobacter jejuni. Nat Commun 8:14500. https://doi.org/10.1038/ncomms14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW (2002) Improved foamy virus vectors with minimal viral sequences. Mol Ther 6(3):321–328

    Article  CAS  Google Scholar 

  57. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976. https://doi.org/10.1038/nmeth.2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu X, Brewer G (2012) The regulation of mRNA stability in mammalian cells: 2.0. Gene 500(1):10–21. https://doi.org/10.1016/j.gene.2012.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van der Maarel SM, Deidda G, Lemmers RJ, van Overveld PG, van der Wielen M, Hewitt JE, Sandkuijl L, Bakker B, van Ommen GJ, Padberg GW, Frants RR (2000) De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am J Hum Genet 66(1):26–35. https://doi.org/10.1086/302730

    Article  PubMed  Google Scholar 

  60. Jones T, Jones PL, Asakura A (2018) A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy. PLOS ONE 13(2):e0192657

    Article  Google Scholar 

  61. Lim J-W, Wong C-J, Yao Z, Tawil R, van der Maarel SM, Miller DG, Tapscott SJ, Filippova GN (2018) Small noncoding RNAs in FSHD2 muscle cells reveal both DUX4- and SMCHD1-specific signatures. Hum Mol Genet 27(15):2644–2657

    Google Scholar 

  62. Haynes P, Kernan K, Zhou S-L, Miller DG (2017) Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures. Skeletal Muscle 7(1)

    Google Scholar 

  63. De Iaco A, Planet E, Coluccio A, Verp S, Duc J, Trono D (2017) DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nature Genetics 49(6):941–945

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, D.G. (2019). Gene Therapy for Facioscapulohumeral Muscular Dystrophy (FSHD). In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_29

Download citation

Publish with us

Policies and ethics