Skip to main content

RNAi Therapy for Dominant Muscular Dystrophies and Other Myopathies

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

Historically, the muscle gene therapy field has been primarily focused on replacing defective or missing genes underlying recessive disorders and has matured to the point where several gene replacement strategies have now been tested or are underway in human clinical trials. Unfortunately, gene replacement strategies are not indicated for treating dominant diseases, where reduction or elimination of an abnormal allele would be needed, and as a result, gene therapies for dominant muscular dystrophies have lagged behind. Importantly, the emergence of RNA interference (RNAi) as a gene-silencing tool provided a means to begin closing this development gap. In the first edition of this chapter of Muscle Gene Therapy, we discussed the prospects of combining RNAi and gene therapy to treat dominant muscle diseases, but proof of concept for its practical usage had not been demonstrated at the time. Here, in this second edition, we update our current understanding of the mechanisms underlying RNAi, compile several preclinical examples of RNAi-based gene therapies for muscle diseases, and discuss current prospects for translating these strategies toward the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. INSERM FMoHa (2017) Prevalence of rare diseases: bibliographic data. Orphanet report. Available from: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf. Cited 2008

  2. National Institutes of Health Office of Rare Diseases Research (2009) Rare diseases and related terms. Available from: http://rarediseases.info.nih.gov/RareDiseaseList.aspx?PageID=1

  3. Mendell JR et al (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71(3):304–313

    Article  CAS  PubMed  Google Scholar 

  4. Harper PS (1989) Myotonic dystrophy, 2nd edn. W.B. Saunders, London

    Google Scholar 

  5. Flanigan KM et al (2001) Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral dystrophy. Neuromuscul Disord 11(6–7):525–529

    Article  CAS  PubMed  Google Scholar 

  6. Tawil R, Van Der Maarel SM (2006) Facioscapulohumeral muscular dystrophy. Muscle Nerve 34(1):1–15

    Article  CAS  PubMed  Google Scholar 

  7. Deenen JC et al (2014) Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 83(12):1056–1059

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  10. Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  11. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai EC (2002) Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364

    Article  CAS  PubMed  Google Scholar 

  13. Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  14. Lagos-Quintana M et al (2003) New microRNAs from mouse and human. RNA 9(2):175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molnar A et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58(1):165–174

    Article  CAS  PubMed  Google Scholar 

  16. Molnar A et al (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447(7148):1126–1129

    Article  CAS  PubMed  Google Scholar 

  17. Zeng Y, Cai X, Cullen BR (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392:371–380

    Article  CAS  PubMed  Google Scholar 

  18. Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17(1):169–175

    Article  CAS  PubMed  Google Scholar 

  19. Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  20. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101

    Article  CAS  PubMed  Google Scholar 

  21. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gregory RI et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    Article  CAS  PubMed  Google Scholar 

  24. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23):2162–2167

    Article  CAS  PubMed  Google Scholar 

  26. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  27. Han J et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901

    Article  CAS  PubMed  Google Scholar 

  28. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16):4776–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Provost P et al (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21(21):5864–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang H et al (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21(21):5875–5885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang H et al (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118(1):57–68

    Article  CAS  PubMed  Google Scholar 

  32. Chendrimada TP et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forstemann K et al (2005) Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Matranga C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620

    Article  CAS  PubMed  Google Scholar 

  35. Ro S et al (2007) Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35(17):5944–5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  37. Rose SD et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33(13):4140–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paddison PJ et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sibley CR et al (2012) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40(1):438–448

    Article  CAS  PubMed  Google Scholar 

  40. Harper SQ et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102(16):5820–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xia H et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8):816–820

    Article  CAS  PubMed  Google Scholar 

  42. Grimm D et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541

    Article  CAS  PubMed  Google Scholar 

  43. Fechner H et al (2008) Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med 86(9):987–997

    Article  CAS  PubMed  Google Scholar 

  44. Bisset DR et al (2015) Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 24(17):4971–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bortolanza S et al (2011) AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol Ther 19(11):2055–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu J et al (2014) RNAi-mediated gene silencing of mutant myotilin improves myopathy in LGMD1A mice. Mol Ther Nucleic Acids 3:e160

    Article  PubMed  PubMed Central  Google Scholar 

  47. Malerba A et al (2017) PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 8:14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wallace LM et al (2011) RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1). Mol Ther 19(11):2048–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wallace LM et al (2012) RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther 20(7):1417–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Du G et al (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273(23):5421–5427

    Article  CAS  PubMed  Google Scholar 

  51. Harper SQ et al (2006) Optimization of feline immunodeficiency virus vectors for RNA interference. J Virol 80(19):9371–9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li MJ et al (2003) Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 8(2):196–206

    Article  CAS  PubMed  Google Scholar 

  53. McBride JL et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105(15):5868–5873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grimm D (2011) The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mook OR et al (2009) Allele-specific cancer cell killing in vitro and in vivo targeting a single-nucleotide polymorphism in POLR2A. Cancer Gene Ther 16(6):532–538

    Article  CAS  PubMed  Google Scholar 

  56. Saydam O et al (2005) Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 12(5):803–812

    Article  CAS  PubMed  Google Scholar 

  57. Tacere Therapeutics, Inc. (2013–2016) Safety and efficacy study of single doses of TT-034 in patients with chronic hepatitis C. C.g. National Institutes of Health (ed). https://clinicaltrials.gov/ct2/show/NCT01899092

  58. Quinzii CM et al (2008) X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am J Hum Genet 82(1):208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corbett MA et al (2005) An alphaTropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol 57(1):42–49

    Article  CAS  PubMed  Google Scholar 

  60. de Haan A et al (2002) Skeletal muscle of mice with a mutation in slow alpha-tropomyosin is weaker at lower lengths. Neuromuscul Disord 12(10):952–957

    Article  PubMed  Google Scholar 

  61. Durling HJ et al (2002) De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscul Disord 12(10):947–951

    Article  CAS  PubMed  Google Scholar 

  62. Ilkovski B et al (2008) Disease severity and thin filament regulation in M9R TPM3 nemaline myopathy. J Neuropathol Exp Neurol 67(9):867–877

    Article  CAS  PubMed  Google Scholar 

  63. Kee AJ, Hardeman EC (2008) Tropomyosins in skeletal muscle diseases. Adv Exp Med Biol 644:143–157

    Article  CAS  PubMed  Google Scholar 

  64. Laing NG et al (1995) A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 10(2):249

    CAS  PubMed  Google Scholar 

  65. Penisson-Besnier I et al (2007) A second pedigree with autosomal dominant nemaline myopathy caused by TPM3 mutation: a clinical and pathological study. Neuromuscul Disord 17(4):330–337

    Article  PubMed  Google Scholar 

  66. Tan P et al (1999) Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 9(8):573–579

    Article  CAS  PubMed  Google Scholar 

  67. Lehtokari VL et al (2008) Identification of a founder mutation in TPM3 in nemaline myopathy patients of Turkish origin. Eur J Hum Genet 16(9):1055–1061

    Article  CAS  PubMed  Google Scholar 

  68. Rethinasamy P et al (1998) Molecular and physiological effects of alpha-tropomyosin ablation in the mouse. Circ Res 82(1):116–123

    Article  CAS  PubMed  Google Scholar 

  69. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30(2):106–114

    Article  CAS  PubMed  Google Scholar 

  70. Miller VM et al (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 100(12):7195–7200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodriguez-Lebron E, Paulson HL (2006) Allele-specific RNA interference for neurological disease. Gene Ther 13(6):576–581

    Article  CAS  PubMed  Google Scholar 

  72. Schwarz DS et al (2006) Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2(9):e140

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miller JRC et al (2017) Allele-selective suppression of mutant huntingtin in primary human blood cells. Sci Rep 7:46740

    Article  PubMed  PubMed Central  Google Scholar 

  74. McCaffrey AP et al (2002) RNA interference in adult mice. Nature 418(6893):38–39

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Q. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harper, S.Q. (2019). RNAi Therapy for Dominant Muscular Dystrophies and Other Myopathies. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_28

Download citation

Publish with us

Policies and ethics