Skip to main content

Genome Editing for Duchenne Muscular Dystrophy

  • Chapter
  • First Online:

Abstract

The recent genome editing revolution has been fueled by the discovery and adaptation of highly specific endonucleases including meganucleases, zinc finger nucleases (ZFNs), TALENs, and CRISPR/Cas9. These genome editing technologies permit user-defined genome modifications by creating double-strand DNA breaks and exploiting endogenous DNA repair pathways to introduce DNA sequence changes. Genome editing has entered multiple clinical trials in a range of diseases including HIV, cancer, and hemophilia, and several preclinical successes have been reported for treating models of neuromuscular diseases, including Duchenne muscular dystrophy (DMD). These studies include correction of numerous different mutations in patient-derived muscle cells and stem cells by a variety of genome editing strategies and endonuclease technologies. Preclinical studies have also shown efficacy of genome editing by restoring dystrophin protein expression and improving skeletal muscle physiology in animal models of DMD. This preclinical work highlights the potential for DNA repair therapy to treat DMD and other debilitating and fatal genetic diseases. Ongoing work seeks to address remaining issues including efficient delivery, addressing potential immune response or off-target interactions, and characterizing long-term safety and efficacy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323(6089):646–650. https://doi.org/10.1038/323646a0

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  PubMed  Google Scholar 

  3. Fairclough RJ, Wood MJ, Davies KE (2013) Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet 14(6):373–378. https://doi.org/10.1038/nrg3460

    Article  CAS  PubMed  Google Scholar 

  4. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maeder ML, Gersbach CA (2016) Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 24(3):430–446. https://doi.org/10.1038/mt.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15. https://doi.org/10.1016/j.str.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gersbach CA, Gaj T, Barbas CF 3rd (2014) Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 47(8):2309–2318. https://doi.org/10.1021/ar500039w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. https://doi.org/10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  9. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  10. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taghian DG, Nickoloff JA (1997) Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol 17(11):6386–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147. https://doi.org/10.1038/cr.2007.111

    Article  CAS  PubMed  Google Scholar 

  13. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105(15):5809–5814. https://doi.org/10.1073/pnas.0800940105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee HJ, Kim E, Kim JS (2010) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20(1):81–89. https://doi.org/10.1101/gr.099747.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sollu C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, Heilbronn R, Cathomen T (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 38(22):8269–8276. https://doi.org/10.1093/nar/gkq720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hilton IB, Gersbach CA (2015) Enabling functional genomics with genome engineering. Genome Res 25(10):1442–1455. https://doi.org/10.1101/gr.190124.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729. https://doi.org/10.1126/science.aaf8729

    Article  CAS  PubMed  Google Scholar 

  21. Taglia A, Petillo R, D'Ambrosio P, Picillo E, Torella A, Orsini C, Ergoli M, Scutifero M, Passamano L, Palladino A, Nigro G, Politano L (2015) Clinical features of patients with dystrophinopathy sharing the 45-55 exon deletion of DMD gene. Acta Myol 34(1):9–13

    PubMed  PubMed Central  Google Scholar 

  22. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6:6244. https://doi.org/10.1038/ncomms7244

    Article  CAS  PubMed  Google Scholar 

  23. Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, Kohn DB, Nakano A, Nelson SF, Miceli MC, Spencer MJ, Pyle AD (2016) A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18(4):533–540. https://doi.org/10.1016/j.stem.2016.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maggio I, Liu J, Janssen JM, Chen X, Goncalves MA (2016) Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci Rep 6:37051. https://doi.org/10.1038/srep37051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beroud C, Collod-Beroud G, Boileau C, Soussi T, Junien C (2000) UMD (universal mutation database): a generic software to build and analyze locus-specific databases. Hum Mutat 15(1):86–94. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<86::AID-HUMU16>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  26. Aartsma-Rus A, Van Deutekom JCT, Fokkema IF, Van Ommen GJB, Den Dunnen JT (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144. https://doi.org/10.1002/mus.20586

    Article  CAS  PubMed  Google Scholar 

  27. White SJ, Aartsma-Rus A, Flanigan KM, Weiss RB, Kneppers AL, Lalic T, Janson AA, Ginjaar HB, Breuning MH, den Dunnen JT (2006) Duplications in the DMD gene. Hum Mutat 27(9):938–945. https://doi.org/10.1002/humu.20367

    Article  CAS  PubMed  Google Scholar 

  28. Chapdelaine P, Pichavant C, Rousseau J, Paques F, Tremblay JP (2010) Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther 17(7):846–858. https://doi.org/10.1038/gt.2010.26

    Article  CAS  PubMed  Google Scholar 

  29. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, Fedrigo O, Mouly V, Tremblay JP, Gersbach CA (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21(9):1718–1726. https://doi.org/10.1038/mt.2013.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the Dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4(1):143–154. https://doi.org/10.1016/j.stemcr.2014.10.013

    Article  CAS  Google Scholar 

  31. Maggio I, Stefanucci L, Janssen JM, Liu J, Chen X, Mouly V, Goncalves MA (2016) Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res 44(3):1449–1470. https://doi.org/10.1093/nar/gkv1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, Reddy TE, Gersbach CA (2015) Correction of dystrophin expression in cells from duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 23(3):523–532. https://doi.org/10.1038/mt.2014.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iyombe-Engembe JP, Ouellet DL, Barbeau X, Rousseau J, Chapdelaine P, Lague P, Tremblay JP (2016) Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids 5:e283. https://doi.org/10.1038/mtna.2015.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407. https://doi.org/10.1126/science.aad5143

    Article  CAS  PubMed  Google Scholar 

  35. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  36. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403. https://doi.org/10.1126/science.aad5725

    Article  CAS  PubMed  Google Scholar 

  37. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454. https://doi.org/10.1038/ncomms14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R (2016) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24(3):564–569. https://doi.org/10.1038/mt.2015.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Popplewell L, Koo T, Leclerc X, Duclert A, Mamchaoui K, Gouble A, Mouly V, Voit T, Paques F, Cedrone F, Isman O, Yanez-Munoz RJ, Dickson G (2013) Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther 24(7):692–701. https://doi.org/10.1089/hum.2013.081

    Article  CAS  PubMed  Google Scholar 

  40. Long CZ, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345(6201):1184–1188. https://doi.org/10.1126/science.1254445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benabdallah BF, Duval A, Rousseau J, Chapdelaine P, Holmes MC, Haddad E, Tremblay JP, Beausejour CM (2013) Targeted gene addition of microdystrophin in mice skeletal muscle via human myoblast transplantation. Mol Ther Nucleic Acids 2:e68. https://doi.org/10.1038/mtna.2012.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaaf T, Mayerhofer T, Chamberlain JS, Ervasti JM, McIvor RS, Kyba M, Perlingeiro RCR (2013) An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4:1549. https://doi.org/10.1038/ncomms2550

    Article  CAS  PubMed  Google Scholar 

  43. Wojtal D, Kemaladewi DU, Malam Z, Abdullah S, Wong TWY, Hyatt E, Baghestani Z, Pereira S, Stavropoulos J, Mouly V, Mamchaoui K, Muntoni F, Voit T, Gonorazky HD, Dowling JJ, Wilson MD, Mendoza-Londono R, Ivakine EA, Cohn RD (2016) Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet 98(1):90–101. https://doi.org/10.1016/j.ajhg.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  44. Corbi N, Libri V, Fanciulli M, Tinsley JM, Davies KE, Passananti C (2000) The artificial zinc finger coding gene ‘Jazz’ binds the utrophin promoter and activates transcription. Gene Ther 7(12):1076–1083. https://doi.org/10.1038/sj.gt.3301204

    Article  CAS  PubMed  Google Scholar 

  45. Strimpakos G, Corbi N, Pisani C, Di Certo MG, Onori A, Luvisetto S, Severini C, Gabanella F, Monaco L, Mattei E, Passananti C (2014) Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice. J Cell Physiol 229(9):1283–1291. https://doi.org/10.1002/jcp.24567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perrin A, Rousseau J, Tremblay JP (2017) Increased expression of laminin subunit alpha 1 chain by dCas9-VP160. Mol Ther Nucleic Acids 6:68–79. https://doi.org/10.1016/j.omtn.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  47. Sibley CR, Blazquez L, Ule J (2016) Lessons from non-canonical splicing. Nat Rev Genet 17(7):407–421. https://doi.org/10.1038/nrg.2016.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wright AV, Nunez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing Nature’s toolbox for genome engineering. Cell 164(1–2):29–44. https://doi.org/10.1016/j.cell.2015.12.035

    Article  CAS  PubMed  Google Scholar 

  50. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553. https://doi.org/10.1038/nbt.2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Corti S, Nizzardo M, Simone C, Falcone M, Nardini M, Ronchi D, Donadoni C, Salani S, Riboldi G, Magri F, Menozzi G, Bonaglia C, Rizzo F, Bresolin N, Comi GP (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 4(165):165ra162. https://doi.org/10.1126/scitranslmed.3004108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, Lopez-Giraldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM (2016) In vivo correction of anaemia in beta-thalassemic mice by gammaPNA-mediated gene editing with nanoparticle delivery. Nat Commun 7:13304. https://doi.org/10.1038/ncomms13304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lattanzi A, Duguez S, Moiani A, Izmiryan A, Barbon E, Martin S, Mamchaoui K, Mouly V, Bernardi F, Mavilio F, Bovolenta M (2017) Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system. Mol Ther Nucleic Acids 7:11–19. https://doi.org/10.1016/j.omtn.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maresca M, Lin VG, Guo N, Yang Y (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23(3):539–546. https://doi.org/10.1101/gr.145441.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153. https://doi.org/10.1101/gr.161638.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149. https://doi.org/10.1038/nature20565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560. https://doi.org/10.1038/ncomms6560

    Article  CAS  PubMed  Google Scholar 

  58. Perez-Pinera P, Ousterout DG, Brown MT, Gersbach CA (2012) Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 40(8):3741–3752. https://doi.org/10.1093/nar/gkr1214

    Article  CAS  PubMed  Google Scholar 

  59. Hermann M, Maeder ML, Rector K, Ruiz J, Becher B, Burki K, Khayter C, Aguzzi A, Joung JK, Buch T, Pelczar P (2012) Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos. PLoS One 7(9):e41796. https://doi.org/10.1371/journal.pone.0041796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588(21):3982–3988. https://doi.org/10.1016/j.febslet.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  61. Remy S, Tesson L, Menoret S, Usal C, De Cian A, Thepenier V, Thinard R, Baron D, Charpentier M, Renaud JB, Buelow R, Cost GJ, Giovannangeli C, Fraichard A, Concordet JP, Anegon I (2014) Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Res 24(8):1371–1383. https://doi.org/10.1101/gr.171538.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sato T, Sakuma T, Yokonishi T, Katagiri K, Kamimura S, Ogonuki N, Ogura A, Yamamoto T, Ogawa T (2015) Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Rep 5(1):75–82. https://doi.org/10.1016/j.stemcr.2015.05.011

    Article  CAS  Google Scholar 

  63. Quadros RM, Harms DW, Ohtsuka M, Gurumurthy CB (2015) Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio 5:191–197. https://doi.org/10.1016/j.fob.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nik-Ahd F, Bertoni C (2014) Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy. Stem Cells 32(7):1817–1830. https://doi.org/10.1002/stem.1668

    Article  CAS  PubMed  Google Scholar 

  65. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121–131. https://doi.org/10.1038/nm.3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34(3):328–333. https://doi.org/10.1038/nbt.3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gapinske M, Luu A, Winter J, Woods WS, Kostan KA, Shiva N, Song JS, Perez-Pinera P (2018) CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol 19:107

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, Li J, Zhang Y, Song B, Sun X, Ding Q, Song Y, Chang X (2018) Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell 72, 380–394

    Google Scholar 

  69. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213. https://doi.org/10.1242/dmm.018424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81(4):1189–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580

    Article  CAS  PubMed  Google Scholar 

  72. Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PM, Varki A, Martin PT (2010) A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2(42):42ra54. https://doi.org/10.1126/scitranslmed.3000692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. t Hoen PA, de Meijer EJ, Boer JM, Vossen RH, Turk R, Maatman RG, Davies KE, van Ommen GJ, van Deutekom JC, den Dunnen JT (2008) Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 283(9):5899–5907. https://doi.org/10.1074/jbc.M709410200

    Article  CAS  Google Scholar 

  74. Robinson-Hamm JN, Nelson CE, Rivera RMC, Aartsma-Rus A, Asokan A, Gersbach CA (2016) 504. Restoration of Dystrophin expression by gene editing with S. aureus Cas9 in models of Duchenne muscular dystrophy. Mol Ther 24:S201. https://doi.org/10.1016/S1525-0016(16)33313-5

    Article  Google Scholar 

  75. Young CS, Mokhonova E, Quinonez M, Pyle AD, Spencer MJ (2017) Creation of a novel humanized dystrophic mouse model of duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J Neuromuscul Dis 4(2):139–145

    Article  PubMed  PubMed Central  Google Scholar 

  76. Duan D (2015) Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev 26(1):57–69. https://doi.org/10.1089/humc.2015.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM, Bassel-Duby R, Piercy RJ, Olson EN (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362(6410):86–91. https://doi.org/10.1126/science.aau1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M (2014) Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep 4:5635. https://doi.org/10.1038/srep05635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu HH, Zhao H, Qing YB, Pan WR, Jia BY, Zhao HY, Huang XX, Wei HJ (2016) Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J Mol Sci 17(10):1668. https://doi.org/10.3390/ijms17101668

    Article  CAS  PubMed Central  Google Scholar 

  80. Chen Y, Zheng Y, Kang Y, Yang W, Niu Y, Guo X, Tu Z, Si C, Wang H, Xing R, Pu X, Yang SH, Li S, Ji W, Li XJ (2015) Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 24(13):3764–3774. https://doi.org/10.1093/hmg/ddv120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nelson CE, Gersbach CA (2016) Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng 7:637–662

    Article  CAS  PubMed  Google Scholar 

  82. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15(7):445–451. https://doi.org/10.1038/nrg3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, Paschon DE, Miller JC, Davidson RJ, Shivak D, Zhou S, Rieders J, Gregory PD, Holmes MC, Rebar EJ, High KA (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126(15):1777–1784. https://doi.org/10.1182/blood-2014-12-615492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13(10):868–874. https://doi.org/10.1038/nmeth.3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF (2014) Innate immunity to adenovirus. Hum Gene Ther 25(4):265–284. https://doi.org/10.1089/hum.2014.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang D, Mou H, Li S, Li Y, Hough S, Tran K, Li J, Yin H, Anderson DG, Sontheimer E, Weng Z, Gao G, Xue W (2015) Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 26(7):432–442. https://doi.org/10.1089/hum.2015.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoggatt J (2016) Gene therapy for “bubble boy” disease. Cell 166(2):263. https://doi.org/10.1016/j.cell.2016.06.049

    Article  CAS  PubMed  Google Scholar 

  88. Persons DA (2010) Lentiviral vector gene therapy: effective and safe? Mol Ther 18(5):861–862. https://doi.org/10.1038/mt.2010.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nightingale SJ, Hollis RP, Pepper KA, Petersen D, Yu XJ, Yang C, Bahner I, Kohn DB (2006) Transient gene expression by nonintegrating lentiviral vectors. Mol Ther 13(6):1121–1132. https://doi.org/10.1016/j.ymthe.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  90. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25(11):1298–1306. https://doi.org/10.1038/nbt1353

    Article  CAS  PubMed  Google Scholar 

  91. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, Shobha T, Mehdipour M, Liu H, Huang WC, Lan F, Bray NL, Li S, Corn JE, Kataoka K, Doudna JA, Conboy I, Murthy N (2017) Nanoparticle delivery of Cas ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 1:889–901. https://doi.org/10.1038/s41551-017-0137-2

  92. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33(1):73–80. https://doi.org/10.1038/nbt.3081

    Article  CAS  PubMed  Google Scholar 

  93. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. https://doi.org/10.1016/j.stem.2012.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maggio I, Chen XY, Goncalves MAFV (2016) The emerging role of viral vectors as vehicles for DMD gene editing. Genome Med 8:59. https://doi.org/10.1186/s13073-016-0316-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17(10):1771–1778. https://doi.org/10.1038/mt.2009.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Benchaouir R, Meregalli M, Farini A, D'Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y (2007) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 1(6):646–657. https://doi.org/10.1016/j.stem.2007.09.016

    Article  CAS  PubMed  Google Scholar 

  97. Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133+ cells form functional satellite cells after intramuscular transplantation in Immunodeficient host mice. Mol Ther 22(5):1008–1017. https://doi.org/10.1038/mt.2014.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267. https://doi.org/10.1038/ncb1542

    Article  CAS  PubMed  Google Scholar 

  99. Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, Roostalu U, Natali Sora MG, Scarlato M, De Pellegrin M, Godi C, Giuliani S, Ciotti F, Tonlorenzi R, Lorenzetti I, Rivellini C, Benedetti S, Gatti R, Marktel S, Mazzi B, Tettamanti A, Ragazzi M, Imro MA, Marano G, Ambrosi A, Fiori R, Sormani MP, Bonini C, Venturini M, Politi LS, Torrente Y, Ciceri F (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528. https://doi.org/10.15252/emmm.201505636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195. https://doi.org/10.1172/JCI20325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. https://doi.org/10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arnett ALH, Konieczny P, Ramos JN, Hall J, Odom G, Yablonka-Reuveni Z, Chamberlain JR (2014) Chamberlain JS (2014) Adeno-associated viral vectors do not efficiently target muscle satellite cells. Mol Ther Methods Clin Dev 1:14038. https://doi.org/10.1038/mtm.2014.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hakim CH, Wasala NB, Nelson CE, Wasala LP, Yue Y, Louderman JA, Lessa TB, Dai A, Zhang K, Jenkins GJ, Nance ME, Pan X, Kodippili K, Yang NN, Chen SJ, Gersbach CA, Duan D (2018) AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight 3(23):e124297

    Article  PubMed Central  Google Scholar 

  104. Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA (2019) Long-term evaluation of AAV-CRISPR genome editing for duchenne muscular dystrophy. Nat Med. In press

    Google Scholar 

  105. Moore R, Spinhirne A, Lai MJ, Preisser S, Li Y, Kang T, Bleris L (2015) CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res 43(2):1297–1303. https://doi.org/10.1093/nar/gku1326

    Article  CAS  PubMed  Google Scholar 

  106. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197. https://doi.org/10.1038/nbt.3117

    Article  CAS  PubMed  Google Scholar 

  108. Kim D, Kim S, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res 26(3):406–415. https://doi.org/10.1101/gr.199588.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  PubMed  Google Scholar 

  111. Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863–868. https://doi.org/10.1038/nbt.3609

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Gersbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nelson, C.E., Gersbach, C.A. (2019). Genome Editing for Duchenne Muscular Dystrophy. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_22

Download citation

Publish with us

Policies and ethics