Skip to main content

Recent Advances in AON-Mediated Exon-Skipping Therapy for Duchenne Muscular Dystrophy

  • Chapter
  • First Online:
Muscle Gene Therapy
  • 1151 Accesses

Abstract

The accelerated approval of eteplirsen (renamed Exondys51™) by US Food and Drug Administration (FDA) garnered renewed enthusiasm for antisense oligonucleotide (AON)-mediated exon-skipping therapies within the Duchenne muscular dystrophy (DMD) community. However, this approval is not without dissent, particularly from within the FDA committee, originating from the discordance between functional improvements seen in patients and lack of efficacy at the cellular level. Undoubtedly, improvements in exon-skipping efficiency and delivery of AONs would go a long way to quell doubts on the applicability of this approach in DMD. Several novel strategies have been developed to enhance exon-skipping efficiency. These include modification of the backbone chemistry of AONs (e.g. tricyclo-DNA and peptide nucleic acid) or conjugation of a peptide (e.g. cell-penetrating peptide or muscle-targeting peptide) with AON and the use of adjuvants including hexose and dantrolene. Here, we examine recent developments in these areas and discuss the likelihood of future clinical application and limitations of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30:293–299. https://doi.org/10.1002/humu.20918

    Article  PubMed  Google Scholar 

  2. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS, Duan D (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23:1435–1439. https://doi.org/10.1038/nbt1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fabb SA, Wells DJ, Serpente P, Dickson G (2002) Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum Mol Genet 11:733–741

    Article  CAS  Google Scholar 

  4. Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, Flanigan KM (2004) Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 55:422–426. https://doi.org/10.1002/ana.20052

    Article  CAS  PubMed  Google Scholar 

  5. Kayali R, Ku JM, Khitrov G, Jung ME, Prikhodko O, Bertoni C (2012) Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet 21:4007–4020. https://doi.org/10.1093/hmg/dds223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boonsanay V, Zhang T, Georgieva A, Kostin S, Qi H, Yuan X, Zhou Y, Braun T (2016) Regulation of skeletal muscle stem cell quiescence by Suv4-20h1-dependent facultative heterochromatin formation. Cell Stem Cell 18:229–242. https://doi.org/10.1016/j.stem.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455–1463. https://doi.org/10.1038/nm.3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier JM, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquie O (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33:962–969. https://doi.org/10.1038/nbt.3297

    Article  CAS  PubMed  Google Scholar 

  9. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  10. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407. https://doi.org/10.1126/science.aad5143

    Article  CAS  PubMed  Google Scholar 

  11. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403. https://doi.org/10.1126/science.aad5725

    Article  CAS  PubMed  Google Scholar 

  12. Gillis JM (2000) An attempt of gene therapy in Duchenne muscular dystrophy: overexpression of utrophin in transgenic mdx mice. Acta Neurol Belg 100:146–150

    CAS  PubMed  Google Scholar 

  13. Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4:1441–1444. https://doi.org/10.1038/4033

    Article  CAS  PubMed  Google Scholar 

  14. Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA, Fletcher S, Partridge TA, Wilton SD (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9:1009–1014. https://doi.org/10.1038/nm897

    Article  CAS  PubMed  Google Scholar 

  15. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102:198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  16. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177. https://doi.org/10.1038/nm1345

    Article  CAS  PubMed  Google Scholar 

  17. Wu B, Xiao B, Cloer C, Shaban M, Sali A, Lu P, Li J, Nagaraju K, Xiao X, Lu QL (2011) One-year treatment of morpholino antisense oligomer improves skeletal and cardiac muscle functions in dystrophic mdx mice. Mol Ther 19:576–583. https://doi.org/10.1038/mt.2010.288

    Article  CAS  PubMed  Google Scholar 

  18. Yin H, Lu Q, Wood M (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16:38–45. https://doi.org/10.1038/sj.mt.6300329

    Article  CAS  PubMed  Google Scholar 

  19. Yin H, Betts C, Saleh AF, Ivanova GD, Lee H, Seow Y, Kim D, Gait MJ, Wood MJ (2010) Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse. Mol Ther 18:819–827. https://doi.org/10.1038/mt.2009.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao X, Shen X, Dong X, Ran N, Han G, Cao L, Gu B, Yin H (2015) Peptide nucleic acid promotes systemic Dystrophin expression and functional rescue in dystrophin-deficient mdx mice. Mol Ther Nucleic Acids. 4:e255. https://doi.org/10.1038/mtna.2015.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang L, Niu H, Gao X, Wang Q, Han G, Cao L, Cai C, Weiler J, Yin H (2013) Effective exon skipping and dystrophin restoration by 2′-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice. PLoS One 8:e61584. https://doi.org/10.1371/journal.pone.0061584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12:675–676. https://doi.org/10.1038/nrneurol.2016.180

    Article  CAS  PubMed  Google Scholar 

  23. Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E, Eteplirsen Study Group and Telethon Foundation DMD Italian Network (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 79:257–271. https://doi.org/10.1002/ana.24555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A, Dugovic B, Chaussenot R, Ferry A, Voit T, Amthor H, Buhr C, Schurch S, Wood MJ, Davies KE, Vaillend C, Leumann C, Garcia L (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21:270–275. https://doi.org/10.1038/nm.3765

    Article  CAS  PubMed  Google Scholar 

  25. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P, Wood MJ (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918. https://doi.org/10.1093/hmg/ddn293

    Article  CAS  PubMed  Google Scholar 

  26. Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iverson PL, Wood MJ (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 18:4405–4414. https://doi.org/10.1093/hmg/ddp395

    Article  CAS  PubMed  Google Scholar 

  27. Yin H, Moulton HM, Betts C, Merritt T, Seow Y, Ashraf S, Wang Q, Boutilier J, Wood MJ (2010) Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Mol Ther 18:1822–1829. https://doi.org/10.1038/mt.2010.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crisp A, Yin H, Goyenvalle A, Betts C, Moulton HM, Seow Y, Babbs A, Merritt T, Saleh AF, Gait MJ, Stuckey DJ, Clarke K, Davies KE, Wood MJ (2011) Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Hum Mol Genet 20:413–421. https://doi.org/10.1093/hmg/ddq477

    Article  CAS  PubMed  Google Scholar 

  29. Yin H, Saleh AF, Betts C, Camelliti P, Seow Y, Ashraf S, Arzumanov A, Hammond S, Merritt T, Gait MJ, Wood MJ (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19:1295–1303. https://doi.org/10.1038/mt.2011.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han G, Gu B, Cao L, Gao X, Wang Q, Seow Y, Zhang N, Wood MJ, Yin H (2016) Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice. Nat Commun 7:10981. https://doi.org/10.1038/ncomms10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kendall GC, Mokhonova EI, Moran M, Sejbuk NE, Wang DW, Silva O, Wang RT, Martinez L, Lu QL, Damoiseaux R, Spencer MJ, Nelson SF, Miceli MC (2012) Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med 4:164ra160. https://doi.org/10.1126/scitranslmed.3005054

    Article  CAS  PubMed  Google Scholar 

  32. Williams JH, Schray RC, Sirsi SR, Lutz GJ (2008) Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice. BMC Biotechnol 8:35. https://doi.org/10.1186/1472-6750-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams JH, Sirsi SR, Latta DR, Lutz GJ (2006) Induction of dystrophin expression by exon skipping in mdx mice following intramuscular injection of antisense oligonucleotides complexed with PEG-PEI copolymers. Mol Ther 14:88–96. https://doi.org/10.1016/j.ymthe.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  34. Sirsi SR, Schray RC, Wheatley MA, Lutz GJ (2009) Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnol 7:1. https://doi.org/10.1186/1477-3155-7-1

    Article  CAS  Google Scholar 

  35. Kim Y, Tewari M, Pajerowski JD, Cai S, Sen S, Williams JH, Sirsi SR, Lutz GJ, Discher DE (2009) Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release 134:132–140. https://doi.org/10.1016/j.jconrel.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  36. Rimessi P, Sabatelli P, Fabris M, Braghetta P, Bassi E, Spitali P, Vattemi G, Tomelleri G, Mari L, Perrone D, Medici A, Neri M, Bovolenta M, Martoni E, Maraldi NM, Gualandi F, Merlini L, Ballestri M, Tondelli L, Sparnacci K, Bonaldo P, Caputo A, Laus M, Ferlini A (2009) Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse. Mol Ther 17:820–827. https://doi.org/10.1038/mt.2009.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferlini A, Sabatelli P, Fabris M, Bassi E, Falzarano S, Vattemi G, Perrone D, Gualandi F, Maraldi NM, Merlini L, Sparnacci K, Laus M, Caputo A, Bonaldo P, Braghetta P, Rimessi P (2010) Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene Ther 17:432–438. https://doi.org/10.1038/gt.2009.145

    Article  CAS  PubMed  Google Scholar 

  38. Bassi E, Falzarano S, Fabris M, Gualandi F, Merlini L, Vattemi G, Perrone D, Marchesi E, Sabatelli P, Sparnacci K, Laus M, Bonaldo P, Rimessi P, Braghetta P, Ferlini A (2012) Persistent dystrophin protein restoration 90 days after a course of intraperitoneally administered naked 2′OMePS AON and ZM2 NP-AON complexes in mdx mice. J Biomed Biotechnol 2012:897076. https://doi.org/10.1155/2012/897076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Falzarano MS, Passarelli C, Bassi E, Fabris M, Perrone D, Sabatelli P, Maraldi NM, Dona S, Selvatici R, Bonaldo P, Sparnacci K, Laus M, Braghetta P, Rimessi P, Ferlini A (2013) Biodistribution and molecular studies on orally administered nanoparticle-AON complexes encapsulated with alginate aiming at inducing dystrophin rescue in mdx mice. Biomed Res Int 2013:527418. https://doi.org/10.1155/2013/527418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA, Sitsen JM, Aartsma-Rus A, van Ommen GJ, Buyse G, Darin N, Verschuuren JJ, Campion GV, de Kimpe SJ, van Deutekom JC (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364:1513–1522. https://doi.org/10.1056/NEJMoa1011367

    Article  CAS  PubMed  Google Scholar 

  41. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, Dickson G, Wood MJ, Wilton SD, Straub V, Kole R, Shrewsbury SB, Sewry C, Morgan JE, Bushby K, Muntoni F (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605. https://doi.org/10.1016/S0140-6736(11)60756-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Almarsson O, Bruice TC (1993) Peptide nucleic acid (PNA) conformation and polymorphism in PNA-DNA and PNA-RNA hybrids. Proc Natl Acad Sci U S A 90:9542–9546

    Article  CAS  Google Scholar 

  43. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  Google Scholar 

  44. Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sonnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  Google Scholar 

  45. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG et al (1992) Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485

    Article  CAS  Google Scholar 

  46. Cutrona G, Carpaneto EM, Ulivi M, Roncella S, Landt O, Ferrarini M, Boffa LC (2000) Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat Biotechnol 18:300–303. https://doi.org/10.1038/73745

    Article  CAS  PubMed  Google Scholar 

  47. Ivanova GD, Arzumanov A, Abes R, Yin H, Wood MJ, Lebleu B, Gait MJ (2008) Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 36:6418–6428. https://doi.org/10.1093/nar/gkn671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ivanova GD, Fabani MM, Arzumanov AA, Abes R, Yin H, Lebleu B, Wood M, Gait MJ (2008) PNA-peptide conjugates as intracellular gene control agents. Nucleic Acids Symp Ser (Oxf) 52:31–32. https://doi.org/10.1093/nass/nrn016

    Article  CAS  Google Scholar 

  49. Gait MJ (2003) Peptide-mediated cellular delivery of antisense oligonucleotides and their analogues. Cell Mol Life Sci 60:844–853. https://doi.org/10.1007/s00018-003-3044-5

    Article  CAS  PubMed  Google Scholar 

  50. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782. https://doi.org/10.1038/nrd2614

    Article  CAS  PubMed  Google Scholar 

  51. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  52. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726. https://doi.org/10.1007/s00018-009-0186-0

    Article  CAS  PubMed  Google Scholar 

  53. Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S, Iversen PL, Kole R (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16:1624–1629. https://doi.org/10.1038/mt.2008.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Li J, Spurney CF, Sali A, Guerron AD, Nagaraju K, Doran T, Lu P, Xiao X, Lu QL (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 105:14814–14819. https://doi.org/10.1073/pnas.0805676105

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sazani P, Blouch R, Weller D, Leow S, Kole R (2009) AVI 5038: initial efficacy and safety evaluation in Cynomolgus monkeys. In: Treat-NMD/NIH Conference 2009, Brussels, Belgium

    Google Scholar 

  56. Yin H, Boisguerin P, Moulton HM, Betts C, Seow Y, Boutilier J, Wang Q, Walsh A, Lebleu B, Wood MJ (2013) Context dependent effects of chimeric peptide morpholino conjugates contribute to dystrophin exon-skipping efficiency. Mol Ther Nucleic Acids e124:2. https://doi.org/10.1038/mtna.2013.51

    Article  CAS  Google Scholar 

  57. Betts C, Saleh AF, Arzumanov AA, Hammond SM, Godfrey C, Coursindel T, Gait MJ, Wood MJ (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 1:e38. https://doi.org/10.1038/mtna.2012.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehto T, Castillo Alvarez A, Gauck S, Gait MJ, Coursindel T, Wood MJ, Lebleu B, Boisguerin P (2014) Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res 42:3207–3217. https://doi.org/10.1093/nar/gkt1220

    Article  CAS  PubMed  Google Scholar 

  59. Cao L, Han G, Lin C, Gu B, Gao X, Moulton HM, Seow Y, Yin H (2016) Fructose promotes uptake and activity of oligonucleotides with different chemistries in a context-dependent manner in mdx mice. Mol Ther Nucleic Acids 5:e329. https://doi.org/10.1038/mtna.2016.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li YF, Morcos PA (2008) Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo. Bioconjug Chem 19:1464–1470. https://doi.org/10.1021/bc8001437

    Article  CAS  PubMed  Google Scholar 

  61. Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL (2009) Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17:864–871. https://doi.org/10.1038/mt.2009.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao X, Zhao J, Han G, Zhang Y, Dong X, Cao L, Wang Q, Moulton HM, Yin H (2014) Effective dystrophin restoration by a novel muscle-homing peptide-morpholino conjugate in dystrophin-deficient mdx mice. Mol Ther 22:1333–1341. https://doi.org/10.1038/mt.2014.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang M, Wu B, Lu P, Tucker JD, Milazi S, Shah SN, Lu QL (2014) Pluronic-PEI copolymers enhance exon-skipping of 2′-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice. Gene Ther 21:52–59. https://doi.org/10.1038/gt.2013.57

    Article  CAS  PubMed  Google Scholar 

  64. Wang M, Wu B, Lu P, Cloer C, Tucker JD, Lu Q (2013) Polyethylenimine-modified pluronics (PCMs) improve morpholino oligomer delivery in cell culture and dystrophic mdx mice. Mol Ther 21:210–216. https://doi.org/10.1038/mt.2012.236

    Article  CAS  PubMed  Google Scholar 

  65. Wang M, Wu B, Tucker JD, Lu P, Lu Q (2015) Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice. Int J Nanomedicine 10:5635–5646. https://doi.org/10.2147/IJN.S89910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang M, Wu B, Tucker JD, Bollinger LE, Lu P, Lu Q (2016) Poly(ester amine) composed of polyethylenimine and pluronic enhance delivery of antisense oligonucleotides in vitro and in dystrophic mdx mice. Mol Ther Nucleic Acids. 5:e341. https://doi.org/10.1038/mtna.2016.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu Y, Wu B, Zillmer A, Lu P, Benrashid E, Wang M, Doran T, Shaban M, Wu X, Lu QL (2010) Guanine analogues enhance antisense oligonucleotide-induced exon skipping in dystrophin gene in vitro and in vivo. Mol Ther 18:812–818. https://doi.org/10.1038/mt.2009.320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rybalka E, Timpani CA, Stathis CG, Hayes A, Cooke MB (2015) Metabogenic and nutriceutical approaches to address energy dysregulation and skeletal muscle wasting in Duchenne muscular dystrophy. Nutrients 7:9734–9767. https://doi.org/10.3390/nu7125498

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiFang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, X., Han, G., Yin, H. (2019). Recent Advances in AON-Mediated Exon-Skipping Therapy for Duchenne Muscular Dystrophy. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_19

Download citation

Publish with us

Policies and ethics