Skip to main content

Optical Polarization Tractography Imaging of Structural Changes in the Skeletal and Cardiac Muscles of the mdx4cv Mice

  • Chapter
  • First Online:
  • 1142 Accesses

Abstract

Optical polarization tractography (OPT) is a recently developed imaging technology that can quantitatively evaluate the three-dimensional fiber organization in tissue with microscopic resolution. In this chapter, we first introduce the basic principle and system design of this technology. We then show its applications for imaging skeletal muscle damage and heart structural remodeling in the mdx4cv mice, a mouse model for Duchenne muscular dystrophy. Because of its relatively low system cost, high imaging speed, and cellular-level resolution, OPT may become an effective tool for phenotype assessment in the research of neuromuscular diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Emery AE, Muntoni F, Quinlivan RC (2015) Duchenne muscular dystrophy. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Mah JK (2016) Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatr Dis Treat 12:1795–1807

    Article  Google Scholar 

  3. Faber RM, Hall JK, Chamberlain JS, Banks GB (2014) Myofiber branching rather than myofiber hyperplasia contributes to muscle hypertrophy in mdx mice. Skelet Muscle 4(1):10

    Article  Google Scholar 

  4. Taccardi B, Macchi E, Lux RL, Ershler PR, Spaggiari S, Baruffi S, Vyhmeister Y (1994) Effect of myocardial fiber direction on epicardial potentials. Circulation 90(6):3076–3090

    Article  CAS  Google Scholar 

  5. Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347

    Article  Google Scholar 

  6. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383(9932):1933–1943

    Article  Google Scholar 

  7. Sosnovik D, Wang R, Dai G, Reese T, Wedeen V (2009) Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 11:47

    Article  Google Scholar 

  8. Sosnovik DE, Mekkaoui C, Huang S, Chen HH, Dai G, Stoeck CT, Ngoy S, Guan J, Wang R, Kostis WJ, Jackowski MP, Wedeen VJ, Kozerke S, Liao R (2014) Microstructural impact of ischemia and bone marrow-derived cell therapy revealed with diffusion tensor magnetic resonance imaging tractography of the heart in vivo. Circulation 129(17):1731–1741

    Article  Google Scholar 

  9. Jiang Y, Pandya K, Smithies O, Hsu EW (2004) Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med 52(3):453–460

    Article  Google Scholar 

  10. Healy LJ, Jiang Y, Hsu EW (2011) Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13(1):74

    Article  Google Scholar 

  11. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang K, Wasala NB, Yao X, Duan D, Yao G (2014) Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography. Biomed Opt Express 5(8):2843–2855

    Article  CAS  Google Scholar 

  13. Wang Y, Zhang K, Wasala NB, Duan D, Yao G (2015) Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy. Biomed Opt Express 6(2):347–352

    Article  CAS  Google Scholar 

  14. Fan C, Yao G (2013) Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomed Opt Express 4(3):460–465

    Article  Google Scholar 

  15. Wang Y, Yao G (2013) Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography. Biomed Opt Express 4(11):2540–2545

    Article  Google Scholar 

  16. Wang Y, Zhang K, Duan D, Yao G (2017) Heart structural remodeling in a mouse model of Duchenne cardiomyopathy revealed using optical polarization tractography. Biomed Opt Express 8(3):1271–1276

    Article  CAS  Google Scholar 

  17. Azinfar L, Ravanfar M, Wang Y, Zhang K, Duan D, Yao G (2015) High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography. J Biophotonics 10(2):231–241

    Article  Google Scholar 

  18. Yao X, Wang Y, Ravanfar M, Pfeiffer FM, Duan D, Yao G (2016) Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography. J Biomed Opt 21(11):116004

    Article  Google Scholar 

  19. Fan C, Yao G (2012) Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. Opt Express 20(20):22360–22371

    Article  Google Scholar 

  20. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178

    Article  CAS  Google Scholar 

  21. Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7(4):502–507

    Article  CAS  Google Scholar 

  22. Hee MR, Swanson EA, Fujimoto JG, Huang D (1992) Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. JOSA B 9(6):903–908

    Article  Google Scholar 

  23. De Boer JF, Milner TE, van Gemert MJ, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22(12):934–936

    Article  Google Scholar 

  24. Makita S, Yamanari M, Yasuno Y (2010) Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Opt Express 18(2):854–876

    Article  CAS  Google Scholar 

  25. Fan C, Yao G (2012) Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Opt Lett 37(9):1415–1417

    Article  Google Scholar 

  26. Fan C, Yao G (2012) Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. J Biomed Opt 17(11):110501

    Article  Google Scholar 

  27. Fan C, Yao G (2010) Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Opt Express 18(7):7281–7287

    Article  CAS  Google Scholar 

  28. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  Google Scholar 

  29. Stuckey DJ, Carr CA, Camelliti P, Tyler DJ, Davies KE, Clarke K (2012) In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS One 7(1):e28569

    Article  CAS  Google Scholar 

  30. Crisp A, Yin H, Goyenvalle A, Betts C, Moulton HM, Seow Y, Babbs A, Merritt T, Saleh AF, Gait MJ, Stuckey DJ, Clarke K, Davies KE, Wood MJ (2011) Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Hum Mol Genet 20(3):413–421

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The results presented in this chapter were obtained in close collaboration with Dr. Dongsheng Duan. We thank Yuanbo Wang, Keqing Zhang, Chuanmao Fan, and many other students and colleagues’ valuable contributions to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, G. (2019). Optical Polarization Tractography Imaging of Structural Changes in the Skeletal and Cardiac Muscles of the mdx4cv Mice. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_13

Download citation

Publish with us

Policies and ethics