Skip to main content

Satellite Environmental Sensing

  • Chapter
  • First Online:
  • 1189 Accesses

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

GNSS satellites such as GPS are playing an increasingly crucial role in tracking low earth orbiting (LEO) remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm (Yunck in IEEE Trans Geosci Remote Sens 28:108–116 1990, [2]). These remote sensing satellites employ a precise global network of GNSS, GRACE (Gravity Recovery And Climate Experiment) and Altimetry ground receivers operating in concert with receivers onboard the LEO satellites, with all estimating the satellites’ orbits, GPS orbits, and selected ground locations simultaneously (Yunck in IEEE Trans Geosci Remote Sens 28:108–116 1990, [2]).

GNSS data provide the opportunity to observe Earth system processes with greater accuracy and detail, as they occur.

— W. C. Hammond et al. [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.gdgps.net/applications/index.html.

  2. 2.

    Total electronic contents.

  3. 3.

    Via http://www.cosmic.ucar.edu.

  4. 4.

    Via http://www.cosmic.ucar.edu.

  5. 5.

    Via http://www.tacc.cwb.gov.tw.

  6. 6.

    See, e.g., http://www.esa.int/esaCP/SEMV3FO4KKF_Germany_0.html.

  7. 7.

    http://www.csr.utexas.edu/grace/publications/brochure/page11.html.

  8. 8.

    See e.g., JPL publications in http://sealevel.jpl.nasa.gov/newsroom/featurearchive/index.cfm?y=2010.

  9. 9.

    See http://sealevel.jpl.nasa.gov/newsroom/featurearchive/index.cfm?FuseAction=ShowNews&NewsID=353.

  10. 10.

    See e.g., http://sealevel.jpl.nasa.gov/newsroom/spotlights/index.cfm?FuseAction=ShowNews&NewsID=294.

References

  1. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. https://doi.org/10.1029/2011EO150001

    Article  Google Scholar 

  2. Yunck TP, Wu SC, Wu JT, Thornton CL (1990) Precise tracking of remote sensing satellites with the Global Positioning System. IEEE Trans Geosci Remote Sens 28:108–116

    Article  Google Scholar 

  3. Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: Algorithmen, Prozessierungssystem und erste Ergebnisse. Dissertation. Scientific Technical Report STR02/07, GFZ Potsdam

    Google Scholar 

  4. Foelsche U, Borsche M, Steiner AK, Gobiet M, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2007) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Clim Dyn 31:49–65

    Article  Google Scholar 

  5. Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488

    Article  Google Scholar 

  6. Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806. https://doi.org/10.1029/2008GL034012

    Article  Google Scholar 

  7. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101. https://doi.org/10.1029/2006JD007363

    Article  Google Scholar 

  8. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89(3):313–333

    Article  Google Scholar 

  9. Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, Berlin

    Book  Google Scholar 

  10. Belvis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of water vapour using global positioning system. J Geophys Res 97:15787–15801

    Article  Google Scholar 

  11. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper

    Google Scholar 

  12. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18

    Google Scholar 

  13. Healey S, Jupp A, Offiler D, Eyre J (2003) The assimilation of radio occultation measurements. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Heidelberg

    Google Scholar 

  14. Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atmos Ocean Sci 11:157–186

    Article  Google Scholar 

  15. Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Phys Chem Earth (A) 26:113–124

    Article  Google Scholar 

  16. Yunck TP (2003) The promise of spaceborne GPS for Earth remote sensing. In: International workshop on GPS meteorology, 14th–17th January 2003, Tsukuba, Japan

    Google Scholar 

  17. Anthes RA (2004) Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(1B)

    Google Scholar 

  18. Foelsche U, Kirchengast G, Steiner AK (2006) Atmosphere and climate. Studies by occultation methods, Springer, Berlin

    Book  Google Scholar 

  19. Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000) SuomiNet: a real time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677–694

    Article  Google Scholar 

  20. Resch GM (1984) Water vapour radiometry in geodetic applications. In: Brunner FK (ed) Geodetic refraction. Springer, New York, pp 53–84

    Chapter  Google Scholar 

  21. Thayer D (1974) An improved equation for the radio refractive index of air. Radio Sci 9:803–807

    Article  Google Scholar 

  22. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New York

    Google Scholar 

  23. Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607

    Article  Google Scholar 

  24. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  25. Belvis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  26. Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Belvis M, Businger S (1993) Sensing atmospheric water vapour with the Global Positioning System. Geophys Res Lett 20(23):2631–2634

    Article  Google Scholar 

  27. Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull Geod 64:127–159

    Article  Google Scholar 

  28. Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22:379–386

    Article  Google Scholar 

  29. Khandu, (2008) GPS remote sensing of the Australian Tropopause. Honours dissertation. Curtin University of Technology

    Google Scholar 

  30. Schmidt T, Wickert J, Beyerle G, Reigber C (2004) Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J Geophys Res 109:D13105. https://doi.org/10.1029/2004JD004566

    Article  Google Scholar 

  31. Ray M, Tido S, Conor S, Wang S (2006) Impact of balloon drift errors in radiosonde data on 57 climate statistics. J Clim 19(14):3430–3442

    Article  Google Scholar 

  32. Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Danish Meteorological Institute, Copenhagen

    Google Scholar 

  33. Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS Radio occultation soundings with radiosondes. Geophys Res Lett 32. https://doi.org/10.1029/2004GL021443

  34. Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic \(E\) signatures revealed from multi-satellite radio occultation measurements. Adv Radio Sci 8:225–230. https://doi.org/10.5194/ars-8-225-2010

    Article  Google Scholar 

  35. Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single differencing technique. Geophys Res Lett 29(8) https://doi.org/10.1029/2001GL013982

  36. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32(L13806). https://doi.org/10.1029/2005GL023109

  37. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S, Heise S, Huang C, Jakowski N, Khler W, Mayer C, Offiler D, Ozawa E, Pavelyev A, Rothacher M, Tapley B, Arras C (2008) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Atmospheric and Oceanic Sciences (in press), Terrestrial

    Google Scholar 

  38. Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS Trans Am Geophys Union 87:166. https://doi.org/10.1029/2006EO170003

    Article  Google Scholar 

  39. Tsuda T, Hocke K (2004) Application of GPS occultation for studies of atmospheric waves in the middle atmosphere and ionosphere. In: Anthens et al (eds) Application of GPS remote sensing to meteorology and related fields, Journal of Meteorological Society of Japan, vol 82, No. 1B, pp 419–426

    Google Scholar 

  40. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of apace geodetic data. J Geophys Res 102(B9):20489–20502

    Article  Google Scholar 

  41. Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimata F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan-Exploring frontiers of geodesy-. Earth Planets Space 50(10):i–v

    Article  Google Scholar 

  42. Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapour mapping from interferometric radar measurements. Science 283:1297–1299

    Article  Google Scholar 

  43. Heise S, Wickert J, Beyerle G, Schmidt T, Reigber C (2006) Global monitoring of tropospheric water vapour with GPS radio occultation aboard CHAMP. Adv Space Res 37(12):2222–2227

    Article  Google Scholar 

  44. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36:L15401. https://doi.org/10.1029/2009GL038718

    Article  Google Scholar 

  45. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod 85:723–740. https://doi.org/10.1007/s00190-011-0482-y

    Article  Google Scholar 

  46. Rieser D (2008) Comparison of GRACE-derived monthly surface mass variations with rainfall data in Australia. MSc Thesis. Graz University of Technology

    Google Scholar 

  47. Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432

    Article  Google Scholar 

  48. Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin. Aust J Water Resour 10(2):89–101

    Google Scholar 

  49. Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. J Spat Sci 54(1):23–36. https://doi.org/10.1080/14498596.2009.9635164

    Article  Google Scholar 

  50. Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions - principles and aims. J Geodyn 33(1):3–20. https://doi.org/10.1016/S0264-3707(01)00050-3

    Article  Google Scholar 

  51. Schrama EJO, Visser PNAM (2007) Accuracy assessment of the monthly GRACE geoids based upon a simulation. J Geod 81(1):67–80. https://doi.org/10.1007/s00190-006-0085-1

    Article  Google Scholar 

  52. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS. GALILEO and augmentation systems, Artech House, Boston

    Google Scholar 

  53. Luthcke S, Rowlands D, Lemoine F, Klosko S, Chinn D, McCarthy J (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33:L02402. https://doi.org/10.1029/2005GL024846

    Article  Google Scholar 

  54. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. https://doi.org/10.1126/science.1099192

    Article  Google Scholar 

  55. Bruinsma S, Lemoine J, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45(4):587–601. https://doi.org/10.1016/j.asr.2009.10.012

    Article  Google Scholar 

  56. Lemoine F, Luthcke S, Rowlands D, Chinn D, Klosko S, Cox C (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet. Springer, Berlin, pp 231–236

    Chapter  Google Scholar 

  57. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826. https://doi.org/10.1111/j.1365-246X.2004.02328.x

  58. Chambers D, Wahr J, Nerem R (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(L13310). https://doi.org/10.1029/2004GL020461

  59. Wahr J, Jayne S, Bryan F (2002) A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. J Geophys Res 107(C12):3218. https://doi.org/10.1029/2002JC001274

    Article  Google Scholar 

  60. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2724. https://doi.org/10.1029/1999WR900141

    Article  Google Scholar 

  61. Tiwari V, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. https://doi.org/10.1029/2009GL039401

    Article  Google Scholar 

  62. Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 27(1–2):166–173. https://doi.org/10.1016/j.epsl.2008.10.021

    Article  Google Scholar 

  63. Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114(B06407). https://doi.org/10.1029/2008JB006239

  64. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. https://doi.org/10.1029/2009GL040222

    Article  Google Scholar 

  65. Boy J-P, Chao B (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J Geophys Res - Solid Earth 110(B8):4–12. https://doi.org/10.1029/2002JB002333

    Article  Google Scholar 

  66. Swenson S, Wahr J (2002) Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. J Geophys Res 107(B9):2194. https://doi.org/10.1029/2000JB000024

    Article  Google Scholar 

  67. Barletta V, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172(1):18–30. https://doi.org/10.1111/j.1365-246X.2007.03630.x

    Article  Google Scholar 

  68. Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res 114:B06406. https://doi.org/10.1029/2008JB006161

    Article  Google Scholar 

  69. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39(8):1223. https://doi.org/10.1029/2002WR001736

    Article  Google Scholar 

  70. Ramillien G, Frappart F, Cazenave A, Gntner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth Planet Sci Lett 235(1–2):283–301. https://doi.org/10.1016/j.epsl.2005.04.005

    Article  Google Scholar 

  71. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res (Solid Earth) 103(B12):30205–30230. https://doi.org/10.1029/98JB02844

    Article  Google Scholar 

  72. Heiskanen WA, Moritz H (1967) Physical Geodesy. San Francisco, W.H, Freeman and Company

    Google Scholar 

  73. Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic E signatures revealed from multi-satellite radio occultation measurements. Advances in Radio Science 8:225–230. https://doi.org/10.5194/ars-8-225-2010

    Article  Google Scholar 

  74. Yang Q (2016) Applications of Satellite Geodesy in Environmental and Climate Change. Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6440. Accessed 26 Jan 2017

  75. Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  76. Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98(5):735–751. https://doi.org/10.1109/JPROC.2009.2034765

    Article  Google Scholar 

  77. Yang D, Zhou Y, Wang Y (2009) Remote sensing with reflected signals. GNSS-R data processing software and test analysis. Inside GNSS Sept/Oct:40–45

    Google Scholar 

  78. Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J 17(4):331–335

    Google Scholar 

  79. Lowe ST, Zuffada C, Chao Y, Kroger P, Young LE, LaBrecque JL (2002) 5-cm-Precision aircraft ocean altimetry using GPS reflections. Geophys Res Lett 29(10):1375. https://doi.org/10.1029/2002GL014759

    Article  Google Scholar 

  80. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signal. Radio Sci 37(1):1007. https://doi.org/10.1029/2000RS002539

    Article  Google Scholar 

  81. Cardellach E, Fabra F, Rius A, Pettinato S, D’Addio S (2012) Characterization of dry-snow sub-structure using GNSS reflected signals. Remote Sens Environ 124:122–134. https://doi.org/10.1016/j.rse.2012.05.012

    Article  Google Scholar 

  82. Egido A, Delas M, Garcia M, Caparrini M (2009) Non-space applications of GNSS-R: from research to operational services. Examples of water and land monitoring systems. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Cape Town, pp. II-170–II-173

    Google Scholar 

  83. Gleason S, Hodgart S, Sun Y, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Trans Geosci Remote Sens 43(6):1229–1241. https://doi.org/10.1109/TGRS.2005.845643

    Article  Google Scholar 

  84. Larson KM, Gutmann ED, Zavorotny VU, Braun JJ, Williams MW, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36(17). https://doi.org/10.1029/2009GL039430

  85. Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. https://doi.org/10.1029/2008GL036013

    Article  Google Scholar 

  86. Larson KM (2009) GPS seismology. J Geod 83:227–233. https://doi.org/10.1007/s00190-008-0233-x

    Article  Google Scholar 

  87. Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR Technical Note TN-430, December

    Google Scholar 

  88. Wickert J, Beyerle G, Konig K, Heise S, Grunwaldt L, Michalak G, Reigber C, Schmidt T (2005) GPS radio ocultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Ann Geophys 23:653–657

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awange, J., Kiema, J. (2019). Satellite Environmental Sensing. In: Environmental Geoinformatics. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_23

Download citation

Publish with us

Policies and ethics