Skip to main content

Diversification, Macroeconomic Growth and Development: The Case of Martinique

  • Chapter
  • First Online:
Development, Political, and Economic Difficulties in the Caribbean

Abstract

The case of Martinique offers some new insights on the capacity of diversification as a way out of recessions. Economic accounting of Martinique shows that diversification in service activities can have a causal and long effect on macroeconomic growth but not necessarily on per income capita growth. Reflecting on the last half century of this small island, an Overseas Region of France, using the models of the New Development Structuralist Approach suggests that diversification can be a consequence of a development strategy and a macroeconomic growth accelerator as well, if the territory itself is considered as a product: “a strategic invisible service”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Otherwise named “capacities” of the economy.

  2. 2.

    All the figures are authors’ calculations from regional accounts of Martinique and from World Indicator Indices (WDI) for France and Caribbean small states.

  3. 3.

    In order to eliminate cyclical and erratic possible influences, regressions (1) and (2) are carried out with the trends of norm of absolute value (NVA), modified Lilien index (MLI), and the global GDP rate of growth, all computed with the Hodrick-Prescott filter.

  4. 4.

    With residuals normally distributed, Fisher and student tests ascertaining the non-nullity of the parameters and the effective influence of indices and the RESET test attesting the linearity of the relation conducted, the quality of regressions is quite good, except for the specification weakness of the Durbin and Breush Pagan test (other explaining variables are missing).

  5. 5.

    Because of the difference between the integration orders of time-series indices and the one of GDP per capita rate of growth.

  6. 6.

    The continuing decrease of the real global GDP growth rate with an increase of the diversification indices.

  7. 7.

    As is the case for other regions of France, as an expression of regional and spatial redistribution system in the French Republic.

  8. 8.

    According to Putnam (1993), social capital covers the features of social organizations, such as trust, norms, and networks, that improve the effectiveness of society and facilitate coordinated actions.

  9. 9.

    2.5% for all the overseas regions.

References

  • Baldacchino, Godfrey, and Geoffrey Bertram. “The Beak of the Finch: Insights into the Economic Development of Small, Often Island, Economies.” Small States: Economic Review and Basic Statistics, 12 (2007).

    Google Scholar 

  • ———. “The Beak of the Finch: Insights into the Economic Development of Small Economies.” The Round Table 98 (2009), 141–160.

    Article  Google Scholar 

  • Baldacchino, G., and D. Milne. Lessons from the Political Economy of Small Islands: The Resourcefulness of Jurisdiction. Basingstoke: Macmillan, 2000.

    Google Scholar 

  • Bertram, G. “The MIRAB Model in the Twenty-First Century.” Asia Pacific Viewpoint 47, no. 1 (2006): 1–13.

    Article  Google Scholar 

  • Bertram, G., and R. Watters “The MIRAB Economy in South Pacific Microstates.” Pacific Viewpoint 26, no. 2 (1985): 497–519.

    Article  Google Scholar 

  • Bertram, G., and B. Poirine. “Island Political Economy.” In A World of Islands, ed. Godfrey Baldacchino, 325–373. Malta: G. Baldacchino Editions, Media Center Publications, 2007.

    Google Scholar 

  • Claude De Miras, C. “Le développement des petites économies insulaires relève-t-il encore de l’économie de marché?.” Revue Tiers Monde 38 (1997): 79–98.

    Article  Google Scholar 

  • Dietrich, A. “Does Growth Cause Structural Change, or Is It the Other Way Around? A Dynamic Panel Data Analysis for Seven OECD Countries.” Empirical Economics 43, no. 3 (2012): 915–944.

    Article  Google Scholar 

  • Granvorka, C.G., and P. Angelelli “The European Legal Framework in the French Caribbean.” Social and Economic Studies 65, no. 1 (2016): 87–105.

    Google Scholar 

  • Lewis, W.A. “Economic Development with Unlimited Supplies of Labor.” Manchester School of Economic and Social Studies 22, no. 2 (1954): 139–191.

    Article  Google Scholar 

  • Lilien, D. “Sectoral Shifts and Cyclical Unemployment.” Journal of Political Economy 90, no. 4 (1982): 777–793.

    Article  Google Scholar 

  • McElroy, J.L. “Small Island Tourist Economies Across the Life Cycle.” Asia Pacific Viewpoint 47, no. 1 (2006): 61–77.

    Article  Google Scholar 

  • McMillan, M., D. Rodrik, and C. Sepulveda Structural Change, Fundamentals, and Growth. Washington, DC: International Food Policy Research Institute, 2016.

    Google Scholar 

  • ———. “Structural Change, Fundamentals, and Growth: A Framework and Case Studies.” Working Paper No. 23378, NBER, 2017.

    Google Scholar 

  • Oberst, A., and J.L. McElroy. “Contrasting Socio-Economic and Demographic Profiles of Two, Small Island, Economic Species: MIRAB Versus PROFIT/SITE.” Island Studies Journal 2, no. 2 (2007): 164176.

    Google Scholar 

  • Poirine, Bernard. Small Island Economies: Theory and Development Strategies. Paris: L’Harmattan, 1995.

    Google Scholar 

  • Putnam, R., R. Leonardi, and R.Y. Nanetti. Making Democracy Work. Princeton: Princeton University Press, 1993.

    Google Scholar 

  • Rodrik, D. “Structural Change, Fundamentals, and Growth: An Overview.” 2013. https://drodrik.scholar.harvard.edu/publications/structural-change-fundamentals-and-growth-overview.

  • Stern, N. “The Determinants of Growth.” Economic Journal 101, no. 404 (1991): 122–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Causality Tests, Cointegration Test and Regressions

Appendix: Causality Tests, Cointegration Test and Regressions

All tests and regressions are performed with Gretl software

(a) Causality Tests

Causality test index norm of absolute value (NAV) for production (PRODNAV) to growth rate of real per capita GDP (TxPIBtAtcons).

Equation 2 TxPIBtAtcons

 

Coefficient

Std error

t student

Prob

Const

0.0160651

0.0106804

1.504

0.1427

PRODNAV_1

−0.807569

0.567939

−1.422

0.1650

PRODNAV_2

1.81679

0.590801

3.075

0.0044***

PRODNAV_3

0.0106085

0.464639

0.02283

0.9819

TxPIBtAtcons_1

−0.133702

0.174329

−0.7670

0.4489

TxPIBtAtcons_2

0.337674

0.217313

1.554

0.1304

TxPIBtAtcons_3

−0.423187

0.176711

−2.395

0.0229**

Fisher tests for no restriction:

All lags of PRODNAV F(3, 31) = 3.3889 [0.0302]

Causality test index modified Lilien index (MLI) for production (PRODMLI) to growth rate of real per capita GDP (TxPIBtAtcons).

Equation 1 TxPIBtAtcons

 

Coefficient

Std error

t student

Prob

Const

0.0180695

0.0101776

1.775

0.0856*

TxPIBtAtcons_1

−0.130.890

0.165906

−0.7889

0.4361

TxPIBtAtcons_2

0.363477

0.223863

1.624

0.1146

TxPIBtAtcons_3

−0.447105

0.179755

−2.487

0.0185**

PRODMLI_1

−0.0748681

0.0477233

−1.569

0.1268

PRODMLI_2

0.160.623

0.0484191

3.317

0.0023***

PRODMLI_3

8.95359e-05

0.0408131

0.002194

0.9983

Fisher tests for no restriction:

All lags of PRODMLI F(3, 31) = 3.8629 [0.0186].

Causality test index NAV for production (PRODNAV) to growth rate of real GLOBAL GDP (TXPIBCONS).

Equation 2 TXPIBCONST

 

Coefficient

Std. error

t student

Prob

Const

0.0183433

0.0104461

1.756

0.0890*

PRODNAV_1

−0.938466

0.488476

−1.921

0.0639*

PRODNAV_2

1.78460

0.484161

3.686

0.0009***

PRODNAV_3

−0.0783544

0.452923

−0.1730

0.8638

TXPIBCONST_1

−0.0861520

0.191228

−0.4505

0.6555

TXPIBCONST_2

0.456958

0.178603

2.559

0.0156**

TXPIBCONST_3

−0.409778

0.185530

−2.209

0.0347**

Fisher tests for no restriction:

All lags of PRODNAV F(3, 31) = 4.8232 [0.0072]

Causality test index MLI for production (PRODMLI) to growth rate of real GLOBAL GDP (TXPIBCONS).

Equation 1 TXPIBCONST

 

Coefficient

Std error

t student

Prob

Const

0.0200335

0.0100124

2.001

0.0542*

TXPIBCONST_1

−0.0914565

0.179870

−0.5085

0.6147

TXPIBCONST_2

0.481670

0.178983

2.691

0.0114**

TXPIBCONST_3

−0.429126

0.182555

−2.351

0.0253**

PRODMLI_1

−0.0874613

0.0384569

−2.274

0.0300**

PRODMLI_2

0.157059

0.0393897

3.987

0.0004***

PRODMLI_3

−0.00547476

0.0391537

−0.1398

0.8897

Fisher tests for no restriction:

All lags of PRODMLI F(3, 31) = 5.6665 [0.0032]

(b) Cointegration Tests

Cointegration of the trend of NAV for production (PRODNAV) and growth rate of trend of real GLOBAL GDP (TXhpPIBCONS)

Trends of PRODNAV (hpt_PRODNAV) and of real GLOBAL GDP (TXhptPIBCONST) are Hodrick-Prescott filters of the two variables

Step 3: cointegration

Cointegration regression

OLS using observations 1972–2002 (T = 31)

Dependent variable: TXhptPIBCONST

 

Coefficient

Std error

t student

Prob

Const

0.0228666

0.00128480

17.80

3.78e-017***

hpt_PRODNAV

0.757540

0.0602914

12.56

2.94e-013***

Mean. Dep. var.

0.037771

Std error dep. var.

0.006857

Sum-squared resids.

0.000219

Std error of regres.

0.002748

R2

0.844812

R2 adjusted

0.839461

Log likelihood

139.8548

Akaike criterion

−275.7096

Schwarz criterion

−272.8416

Hannan-Quinn

−274.7747

rho

0.870156

Durbin-Watson

0.145035

Step 4: unit root test for residuals

Augmented Dickey-Fuller test for residuals

testing down from six lags, Akaike criterium (AIC)

Null hypothesis unit root: a = 1

Model: (1 − L)y = (a − 1)*y(−1) + … + e

Estimation (a − 1): −0.0552523

Test value: tau_c(2) = −1.76024

prob. 0.6497

Cointegration of the trend of MLI for production (PRODMLI) and growth rate of trend of real GLOBAL GDP (TXhpPIBCONS)

Trends of PRODNAV (hpt_PRODMLI) and of real GLOBAL GDP (TXhptPIBCONST) are Hodrick-Prescott filters of the two variables

Step 3: cointegration

Cointegration regression

Ordinary Least Square (OLS) using observations 1972–2002 (T = 31)

Dependent variable: TXhptPIBCONST

 

Coefficient

Std error

t student

Prob

Const

0.0240733

0.00135840

17.72

4.23e-017***

hpt_PRODMLI

0.0657574

0.00596318

11.03

6.86e-012***

Mean dep. var.

0.037771

Std. error dep. var.

0.006857

Sum-squared resids.

0.000272

Std. error of regression

0.003061

R2

0.807437

R2 adjusted

0.800797

Log likelihood

136.5101

Akaike criterion

−269.0201

Schwarz criterion

−266.1522

Hannan-Quinn

−268.0853

rho

0.856393

Durbin-Watson

0.140440

Step 4: unit root test for residuals

Augmented Dickey-Fuller test for residuals

With 3 lags (1 − L) residuals

Null hypothesis of unit root: a = 1

Model: (1 − L)y = (a − 1)*y(−1) + … + e

Estimation (a − 1): −0.0522303

Test value: tau_c(2) = −1.80559

prob. 0.6276

(c) Regressions

Trends of PRODNAV, PRODMLI, and of real GLOBAL GDP are Hodrick-Prescott filters of the two variables

Regression 1: TXhptPIBCONST: a + b hpt_PRODNAV

OLS using observations 1972–2002 (T = 31)

Dependent variable: TXhptPIBCONST

 

Coefficient

Std error

t student

Prob

Const

0.0228666

0.00141737

16.13

5.06e-016***

hpt_PRODNAV

0.757540

0.0925790

8.183

5.06e-09***

Mean dep. var.

0.037771

Std error dep. var.

0.006857

Sum of squared resids.

0.000219

Std. error of regression

0.002748

R2

0.844812

R2 adjusted

0.839461

F(1, 29)

66.95535

prob. (F)

5.06e-09

Log likelihood

139.8548

Akaike criterion

−275.7096

Schwarz criterion

−272.8416

Hannan-Quinn

−274.7747

rho

0.870156

Durbin-Watson

0.145035

Normality tests for residuals

Hull Hypothesis: resids. are normally distributed

Chi-deux(2) = 0.974865

prob. = 0.614201

RESET test for linearity

Null hypothesis: the relation is linear

F Test: F(2, 27) = 12.6589

With prob. = P(F(2, 27) > 12.6589) = 0.000132326

Regression 2: TXhptPIBCONST: a + b hpt_PRODMLI

OLS using observations 1972–2002 (T = 31)

Dependent variable: TXhptPIBCONST

 

Coefficient

Std error

t student

Prob

Const

0.0240733

0.00148582

16.20

4.52e-016***

hpt_PRODMLI

0.0657574

0.00943241

6.971

1.15e-07***

Mean. dep. var.

0.037771

Std error dep. var.

0.006857

Sum-squared resid.

0.000272

Éc. type of regression

0.003061

R2

0.807437

R2 adjusted

0.800797

F(1, 29)

48.60082

prob. (F)

1.15e-07

Log likelihood

136.5101

Akaike criterion

−269.0201

Schwarz criterion

−266.1522

Hannan-Quinn

−268.0853

rho

0.856393

Durbin-Watson

0.140440

Normality test for residuals

Null hypothesis: resids. are normally distributed

Chi-deux(2) = 0.0866859

prob. = 0.957583

RESET test for linearity—

Null hypothesis: the relation is linear

F test: F(2, 27) = 20.0549

With prob. = P(F(2, 27) > 20.0549) = 4.5899e-006

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marques, B., Granvorka, C.G. (2019). Diversification, Macroeconomic Growth and Development: The Case of Martinique. In: Bissessar, A. (eds) Development, Political, and Economic Difficulties in the Caribbean. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-02994-4_12

Download citation

Publish with us

Policies and ethics