Skip to main content

Diazoxide-Responsive Forms of Congenital Hyperinsulinism

  • Chapter
  • First Online:
Congenital Hyperinsulinism

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Diazoxide responsiveness is typically the starting point for distinguishing congenital hyperinsulinism phenotypes since those who do not respond will often require surgery. Operationally, diazoxide responsiveness is defined as being able to appropriately develop a hyperketonemic response to fasting (beta-hydroxybutyrate >2 mmol/L) prior to developing hypoglycemia (<2.8–3.3 mmol/L, <50–60 mg/dL), in addition to preventing any food-induced hypoglycemia. Of note, only 35% of diazoxide-responsive patients have an identifiable mutation in one of the currently known hyperinsulinism genes. Perinatal stress-induced hyperinsulinism is a transient but often prolonged form of hyperinsulinism associated with risk factors such as birth asphyxia and intrauterine growth restriction. Screening for hypoglycemia is crucial when these risk factors are present, as is starting diuretic treatment before diazoxide to avoid fluid overload and pulmonary hypertension. Genetic forms of diazoxide-responsive hyperinsulinism include a distinctive form caused by dominant activating mutations in glutamate dehydrogenase (GDH). Leucine-induced and fasting hypoglycemia, mild hyperammonemia, and neurologic abnormalities, most commonly atypical absence epilepsy, are key features. Recessive inactivating mutations in short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), an inhibitor of GDH and a fatty acid oxidation enzyme, also cause leucine-sensitive hypoglycemia, but without hyperammonemia. Heterozygous mutations in the transcription factors, hepatocyte nuclear factors 4A and 1A, cause hyperinsulinism and evolve into young adult-onset diabetes (HNF4A-MODY and HNF1A-MODY, respectively). Finally, mutations in the mitochondrial transport protein, uncoupling protein 2 (UCP2), and the plasma membrane protein, monocarboxylate transporter 1 (MCT1), cause rare forms of hyperinsulinism with the unique features of post-glucose load and exercise-induced hypoglycemia, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drash A, Wolff F. Drug therapy in leucine-sensitive hypoglycemia. Metabolism. 1964;13(6):487–92.

    Article  CAS  PubMed  Google Scholar 

  2. Snider KE, Becker S, Boyajian L, Shyng S-L, Macmullen C, Hughes N, et al. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endcrinol Metab. 2013;98(2):E355–63.

    Article  CAS  Google Scholar 

  3. van Veen MR, van Hasselt PM, de Sain-van der Velden MGM, Verhoeven N, Hofstede FC, de Koning TJ, et al. Metabolic profiles in children during fasting. Pediatrics. 2011;127(4):e1021–7.

    Article  PubMed  Google Scholar 

  4. Cornblath M, Levin EY, Hopkins J. Symptomatic neonatal hypoglycemia associated with toxemia of pregnancy. J Pediatr. 1959;55(5):545–62.

    Article  CAS  PubMed  Google Scholar 

  5. Harris D, Weston P, Harding J. Incidence of neonatal hypoglycemia in babies identified as at risk. J Pediatr. 2012;161(5):787–91.

    Article  CAS  PubMed  Google Scholar 

  6. Reynolds CL, Truong L, Rodriguez L, Nedrelow J, Thornton P. Risk factors for perinatal stress-induced hyperinsulinism. In: International meeting of pediatric endocrinology. 2017. p. FC90.

    Google Scholar 

  7. Hoe FM, Thornton PS, Wanner LA, Steinkrauss L, Simmons RA, Stanley CA. Clinical features and insulin regulation in infants with a syndrome of prolonged neonatal hyperinsulinism. J Pediatr. 2006;148(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  8. Le Dune MA. Response to glucagon in small-for-dates hypoglycaemic and non-hypoglycaemic newborn infants. Arch Dis Child. 1972;47(255):754–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Collins JE, Leonard JV. Hyperinsulinism in asphyxiated and small-for-dates infants with hypoglycemia. Lancet. 1984;2(8398):311–3.

    Article  CAS  PubMed  Google Scholar 

  10. Stanley CA, Rozance PJ, Thornton PS, De Leon DD, Harris D, Haymond MW, et al. Re-evaluating “transitional neonatal hypoglycemia”: mechanism and implications for management. J Pediatr. 2015;166(6):1520–1525.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bhushan Arya V, Flanagan SE, Kumaran A, Shield JP, Ellard S, Hussain K, et al. Clinical and molecular characterisation of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age. Arch Dis Child Fetal Neonatal Ed. 2013;98:F356–8.

    Article  Google Scholar 

  12. Yap F, Holer W, Vora A, Halliday R, Ambler G. Severe transient hyperinsulinaemic hypoglycaemia: two neonates without predisposing factors and a review of the literature. Eur J Pediatr. 2003;163:38–41.

    Article  PubMed  Google Scholar 

  13. Avatapalle HB, Banerjee I, Shah S, Pryce M, Nicholson J, Rigby L, et al. Abnormal neurodevelopmental outcomes are common in children with transient congenital hyperinsulinism. Front Endocrinol (Lausanne). 2013;4:60.

    Article  Google Scholar 

  14. Thornton PS, Stanley CA, De Leon DD, Harris D, Haymond MW, Hussain K, et al. Recommendations from the pediatric endocrine society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr. 2015;167(2):238–45.

    Article  PubMed  Google Scholar 

  15. Mizumoto H, Iki Y, Yamashita S, Kawai M, Katayama T, Hata D. Fetal erythroblastosis may be an Indicator of neonatal transient hyperinsulinism. Neonatology. 2015;108:88–92.

    Article  CAS  PubMed  Google Scholar 

  16. Welters A, Lerch C, Kummer S, Marquard J, Salgin B, Mayatepek E, et al. Long-term medical treatment in congenital hyperinsulinism: a descriptive analysis in a large cohort of patients from different clinical centers. Orphanet J Rare Dis. 2015;10:150.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hu S, Xu Z, Yan J, Liu M, Sun B, Li W, et al. The treatment effect of diazoxide on 44 patients with congenital hyperinsulinism. J Pediatr Endocrinol Metab. 2012;25:11–2.

    Article  Google Scholar 

  18. Diazoxide. Lexicomp online, pediatric & neonatal. Lexi-Drugs, Hudson. Ohio: Lexi-Comp.

    Google Scholar 

  19. Li M, LI C, Allen A, Stanley CA, Smith TJ. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem Res. 2014;39:433–45.

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, et al. Mechanism of hyperinsulinism in short-chain 3-Hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem. 2010;285(41):31806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998;338(19):1352–7.

    Article  CAS  PubMed  Google Scholar 

  22. Macmullen C, Fang J, Hsu BYL, Kelly A, De Lonlay-Debeney P, Saudubray J-M, et al. Hyperinsulinism/Hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab. 2001;86:1782–7.

    CAS  PubMed  Google Scholar 

  23. Fang J, Hsu BYL, Macmullen CM, Poncz M, Smith TJ, Stanley CA. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem J. 2002;363:81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI. Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab. 2007;5(4):253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li C, Matter A, Kelly A, Petty TJ, Najafi H, Macmullen C, et al. Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J Biol Chem. 2006;281(22):15064–72.

    Article  CAS  PubMed  Google Scholar 

  26. Kelly A, Ng D, Ferry RJ, Grimberg A, Koo-Mccoy S, Thornton PS, et al. Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab. 2001;86(8):3724–8.

    Article  CAS  PubMed  Google Scholar 

  27. Treberg JR, Clow KA, Greene KA, Brosnan ME, Brosnan JT. Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am J Physiol – Endocrinol Metab. 2010;298(6):E1219–25.

    Article  CAS  PubMed  Google Scholar 

  28. Weinzimer SA, Stanley CA, Berry GT, Yudkoff M, Tuchman M, Thornton PS. A syndrome of congenital hyperinsulinism and hyperammonemia. J Pediatr Weinzimer al. 1997;130(4):661–4.

    Article  CAS  PubMed  Google Scholar 

  29. Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, et al. Neurological aspects of hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50(12):945–9.

    Article  PubMed  Google Scholar 

  30. Zammarchi E, Filippi L, Novembre E, Donati MA. Biochemical evaluation of a patient with a familial form of leucine-sensitive hypoglycemia and concomitant hyperammonemia. Metabolism. 1996;45(8):957–60.

    Article  CAS  PubMed  Google Scholar 

  31. Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA. Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr. 2001;138(3):383–9.

    Article  CAS  PubMed  Google Scholar 

  32. Raizen DM, Brooks-Kayal A, Steinkrauss L, Tennekoon GI, Stanley CA, Kelly A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J Pediatr. 2005;146(3):388–94.

    Article  CAS  PubMed  Google Scholar 

  33. Stanley CA, Fang J, Kutyna K, Hsu BYL, Ming JE, Glaser B, et al. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. Diabetes. 2000;49:667–73.

    Article  CAS  PubMed  Google Scholar 

  34. Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4(4):e118. 0760–0769.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Odom D, Zizlsperger N, Gordon D, Bell G, Rinaldi N, Murray H, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303(5662):1378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mcdonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem. 2013;50(5):403–15.

    Article  PubMed  Google Scholar 

  37. Gupta RK, Vatamaniuk MZ, Lee CS, Flaschen RC, Fulmer JT, Matschinsky FM, et al. The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion. J Clin Invest. 2005;115(4):1006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, et al. Hepatocyte nuclear factor-4 is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem. 2005;281(8):5246–57.

    Article  PubMed  Google Scholar 

  39. Grimberg A, Ferry RJ, Kelly A, Koo-Mccoy S, Polonsky K, Glaser B, et al. Dysregulation of insuin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes. 2001;50:322–8.

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Ackermann AM, Boodhansingh KE, Bhatti TR, Liu C, Schug J, et al. Functional and metabolomic consequences of K ATP channel inactivation in human islets. Diabetes. 2017;66:1901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fajans SS, Bell GI. Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4α (HNF4A). Diabetologia. 2007;50:2600–1.

    Article  CAS  PubMed  Google Scholar 

  42. Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4(4):e118.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rozenkova K, Malikova J, Nessa A, Dusatkova L, Bjørkhaug L, Obermannova B, et al. High incidence of heterozygous ABCC8 and HNF1A mutations in Czech patients with congenital hyperinsulinism. J Clin Endocrinol Metab. 2015;100(12):E1540–9.

    Article  PubMed  Google Scholar 

  44. Hamilton AJ, Bingham C, Mcdonald TJ, Cook PR, Caswell RC, Weedon MN, et al. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J Med Genet. 2014;51:165–9.

    Article  CAS  PubMed  Google Scholar 

  45. Numakura C, Hashimoto Y, Daitsu T, Hayasaka K, Mitsui T, Yorifuji T. Two patients with HNF4A-related congenital hyperinsulinism and renal tubular dysfunction: a clinical variation which includes transient hepatic dysfunction. Diabetes Res Clin Pract. 2015;108:e53–5.

    Article  CAS  PubMed  Google Scholar 

  46. Improda N, Shah P, Güemes M, Gilbert C, Morgan K, Sebire N, et al. Hepatocyte nuclear factor-4 alfa mutation associated with hyperinsulinaemic hypoglycaemia and atypical renal Fanconi syndrome: expanding the clinical phenotype. Horm Res Paediatr. 2016;86(5):337–41.

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB. Hepatocyte nuclear factor 4 regulates the expression of pancreatic B-cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J Biol Chem. 2000;275(46):35953–9. A.

    Article  CAS  PubMed  Google Scholar 

  48. Kapoor RR, James CT, Hussain K. HNF4A and hyperinsulinemic hypoglycemia. In: Monogenic hyperinsulinemic hypoglycemia disorders. 2012. p. 182–90.

    Google Scholar 

  49. McGlacken-Byrne SM, Hawkes CP, Flanagan SE, Ellard S, McDonnell CM, Murphy NP. The evolving course of HNF4A hyperinsulinaemic hypoglycaemia-a case series. Diabet Med. 2014;31(1):e1–5.

    Article  CAS  PubMed  Google Scholar 

  50. Stanescu DE, Hughes N, Kaplan B, Stanley CA, De Leó DD. Novel presentations of congenital hyperinsulinism due to mutations in the MODY genes: HNF1A and HNF4A. J Clin Endocrinol Metab. 2012;97(10):E2026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flanagan SE, Kapoor RR, Mali G, Cody D, Murphy N, Schwahn B, et al. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol. 2010;162(5):987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heslegrave AJ, Hussain K. Novel insights into fatty acid oxidation, amino acid metabolism, and insulin secretion from studying patients with loss of function mutations in 3-Hydroxyacyl-CoA dehydrogenase. J Clin Endocrinol Metab. 2013;98(2):496–501.

    Article  CAS  PubMed  Google Scholar 

  53. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, et al. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of b-oxidation in insulin secretion. J Clin Invest. 2001;108(3):457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heslegrave AJ, Kapoor RR, Eaton S, Chadefaux B, Akcay T, Simsek E, et al. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA dehydrogenase. Orphanet J Rare Dis. 2012;7:25.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njølstad PR, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004;53(1):221–7.

    Article  CAS  PubMed  Google Scholar 

  56. Hussain K, Clayton PT, Krywawych S, Ginbey DW, Geboers AJJM, Berger R, et al. Hyperinsulinism of infancy associated with a novel splice site mutation in the Schad gene. J Pediatr. 2005;146:706–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kapoor RR, James C, Flanagan SE, Ellard S, Eaton S, Hussain K. 3-Hydroxyacyl-coenzyme a dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab. 2009;94(7):2221–5.

    Article  CAS  PubMed  Google Scholar 

  58. Martins E, Luis Cardoso M, Rodrigues E, Barbot C, Ramos A, Bennett MJ, et al. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: the clinical relevance of an early diagnosis and report of four new cases. J Inherit Metab Dis. 2011;34:835–42.

    Article  CAS  PubMed  Google Scholar 

  59. Di Candia S, Gessi A, Pepe G, Sogno Valin P, Mangano E, Chiumello G, et al. Identification of a diffuse form of hyperinsulinemic hypoglycemia by 18-fluoro-L-3,4 dihydroxyphenylalanine positron emission tomography/CT in a patient carrying a novel mutation of the HADH gene. Eur J Endocrinol. 2009;160(6):1019–23.

    Article  PubMed  Google Scholar 

  60. Çamtosun E, Flanagan SE, Ellard S, Şıklar Z, Hussain K, Kocaay P, et al. A deep intronic HADH splicing mutation (c.636+471G>T) in a congenital hyperinsulinemic hypoglycemia case: long term clinical course. J Clin Res Pediatr Endocrinol. 2015;7(2):144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Flanagan SE, Patch A-M, Locke JM, Akcay T, Simsek E, Alaei M, et al. Genome-wide homozygosity analysis reveals HADH mutations as a common cause of diazoxide-responsive hyperinsulinemic-hypoglycemia in consanguineous pedigrees. J Clin Endocrinol Metab. 2011;96:E498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Babiker O, Flanagan SE, Ellard S, Al GH, Hussain K, Senniappan S. Protein-induced hyperinsulinaemic hypoglycaemia due to a homozygous HADH mutation in three siblings of a Saudi family. J Pediatr Endocrinol Metab. 2015;28(910):1073–7.

    CAS  PubMed  Google Scholar 

  63. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci. 2014;111(3):960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chan CB, De Leo D, Joseph JW, Mcquaid TS, Ha XF, Xu F, et al. Increased uncoupling protein-2 levels in B-cells are associated with impaired glucose-stimulated insulin secretion mechanism of action. Diabetes. 2001;50:1302–10.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang C-Y, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta-cell dysfunction, and type 2 diabetes. Cell. 2001;105:745–55.

    Article  CAS  PubMed  Google Scholar 

  66. González-Barroso MM, Giurgea I, Bouillaud F, Anedda A, Bellanné-Chantelot C, Hubert L, et al. Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLOsOne. 2008;3(12):e3850.

    Article  Google Scholar 

  67. Laver TW, Weedon MN, Caswell R, Hussain K, Ellard S, Flanagan SE. Analysis of large-scale sequencing cohorts does not support the role of variants in UCP2 as a cause of hyperinsulinaemic hypoglycaemia. Hum Mutat. 2017;38(10):1442–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferrara CT, Boodhansingh KE, Paradies E, Giuseppe F, Steinkrauss LJ, Swartz Topor L, et al. Novel hypoglycemia phenotype in congenital hyperinsulinism due to dominant mutations of uncoupling protein 2. J Clin Endocrinol Metab. 2017;102:942–9.

    PubMed  Google Scholar 

  69. Meissner T, Otonkoski T, Feneberg R, Beinbrech B, Apostolidou S, Sipilä I, et al. Exercise induced hypoglycaemic hyperinsulinism. Arch Dis Child. 2001;84(3):254–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, et al. Physical exercise–induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes. 2003;52:199–204.

    Article  CAS  PubMed  Google Scholar 

  71. Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS, Parton LE, et al. Physical exercise–induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic b cells. Am J Hum Genet. 2007;81:467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinney S, Ganapathy K, Bradfield J, Stokes D, Sasson A, Mackiewicz K, et al. Dominant of congenital hyperinsulinism maps to HK1 region on 10q. Horm Res Paediatr. 2013;80:18–27.

    Article  CAS  PubMed  Google Scholar 

  73. Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner K. Cell Metab. 2007;6:267–79.

    Article  CAS  PubMed  Google Scholar 

  74. Giri D, Vignola ML, Gualtieri A, Scagliotti V, McNamara P, Peak M, et al. Hum Mol Genet. 2017;26(22):4315–26.

    Article  CAS  PubMed  Google Scholar 

  75. Vajravelu M, Chai J, Krock B, Baker S, Landon D, Alter C, et al. Congenital hyperinsulinism and hypopituitarism attributable to a novel mutation in FOXA2. J Clin Endocrinol Metab. 2018;103:1042–7. (Online ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Flanagan SE, Vairo F, Johnson MB, Caswell R, Laver TW, Lango Allen H, et al. Pediatr Diabetes. 2017;18:320–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scholl UI, Goh G, Stolting G, de Oliviera RC, Choi M, Overton JD, et al. Nat Genet. 2013;45(9):1050–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tegtmeyer LC, Rust S, van Scherpenszeel M, Ng BG, Losfeld ME, Timal S, et al. N Engl J Med. 2014;370(6):533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Otonkoski T, Meissner T. A Failure of Monocarboxylate Transporter 1 Expression Silencing. In: Stanley CA, De Leon DD, editors. Monogenic Hyperinsulinemic Hypoglycemia Disorders. Basel: Karger; 2012. p. 172–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yau, D., Stanley, C.A. (2019). Diazoxide-Responsive Forms of Congenital Hyperinsulinism. In: De León-Crutchlow, D., Stanley, C. (eds) Congenital Hyperinsulinism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-030-02961-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02961-6_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-02960-9

  • Online ISBN: 978-3-030-02961-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics