Skip to main content

An Improved Mathematical Model for the Autonomic Regulation of Cardiovascular System

  • Conference paper
  • First Online:
Advances in Body Area Networks I

Part of the book series: Internet of Things ((ITTCC))

  • 987 Accesses

Abstract

The activity of the autonomic nervous system is hardly measurable. This study presents an improved mathematical model to estimate the baroreceptor nerve firing rate, the efferent parasympathetic and sympathetic response in a scenario of postural change from sitting to standing, based on observed blood pressure and heart rate changes. An optimization step is then applied to find the model parameters best fitting to observed cardiac data of healthy people and hypertensive patients using unbiased estimation and Nelder-Mead method. The experimental results on 59 subjects have shown that the improved model can describe autonomic regulation mechanism well and the estimated system parameters have clear clinical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, N., Iqbal, D.: Cardiovascular Diseases and Its Treatment (2016)

    Google Scholar 

  2. Castrodiehl, C., Diez Roux, A.V., Redline, S., Seeman, T., Mckinley, P., Sloan, R., Shea, S.: Sleep duration and quality in relation to autonomic nervous system measures: the multi-ethnic study of atherosclerosis (MESA). Sleep 39 (2016)

    Google Scholar 

  3. Schultz, H.D., Li, Y.L., Ding, Y.: Arterial chemoreceptors and sympathetic nerve activity: implications for hypertension and heart failure. Hypertension 50, 6 (2007)

    Article  Google Scholar 

  4. Karavaev, A.S., Ishbulatov, Y.M., Ponomarenko, V.I., Prokhorov, M.D., Gridnev, V.I., Bezruchko, B.P., Kiselev, A.R.: Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. J. Am. Soc. Hypertens. Jash 10, 235–243 (2016)

    Article  Google Scholar 

  5. Chen, S., Zhang, S., Gong, Y., Dai, K., Sui, M., Yu, Y., Ning, G.: The role of the autonomic nervous system in hypertension: a bond graph model study. Physiol. Meas. 29, 473 (2008)

    Article  Google Scholar 

  6. Calvo, M., Le, R.V., Romero, P.D., Behar, N., Gomis, P., Mabo, P., Hernandez, A.I.: Analysis of a cardiovascular model for the study of the autonomic response of Brugada syndrome patients. In: International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 5591

    Google Scholar 

  7. Seravalle, G., Grassi, G.: Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press. Cardiovasc. Prev. Off. J. Ital. Soc. Hypertens. 23, 175 (2016)

    Article  Google Scholar 

  8. Charkoudian, N., Rabbitts, J.A.: Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin. Proc. 84, 822–830 (2009)

    Article  Google Scholar 

  9. Abboud, F.M.: In search of autonomic balance: the good, the bad, and the ugly. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1449 (2010)

    Article  Google Scholar 

  10. Wang, L., Huang, Z., Wu, J., Meng, Y., Ding, R.: A model-based method to evaluate autonomic regulation of cardiovascular system. In: IEEE International Conference on Wearable and Implantable Body Sensor Networks, pp. 1–6

    Google Scholar 

  11. Guyton, A.C.: Guyton and Hall Textbook of Medical Physiology. Saunders/Elsevier (2011)

    Google Scholar 

  12. Sheng, J., Ji, L., Wang, F., Sun, Y., Zhang, Z., Ji, F., Liu, B., Zhang, W., Jiankang, W., 蒋升, 冀连营.: Modeling human vascular networks and estimation of central aortic pressure. Scientia Sinica Informationis 43, 964 (2013)

    Google Scholar 

  13. Ottesen, J.T., Olufsen, M.S.: Functionality of the baroreceptor nerves in heart rate regulation. Comput. Methods Programs Biomed. 101, 208–219 (2011)

    Article  Google Scholar 

  14. Parati, G., Esler, M.: The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur. Heart J. 33, 1058 (2012)

    Article  Google Scholar 

  15. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Clarendon Press (2003)

    Google Scholar 

  16. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipei Huang .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we describe the part of chemical concentrations and heart rate modeling by the previous model and we use it.

Chemical concentrations: The concentration of neurotransmitters acetylcholine Cach and noradrenaline Cnor are defined using linear differential equations which depend on the sympathetic (Tsym) and parasympathetic (Tpar) responses.

$$ \begin{aligned} \frac{dCnor}{dt} & = \frac{ - Cnor + Tsym}{{\tau_{nor} }} \\ \frac{dCach}{dt} & = \frac{ - Cach + Tpar}{{\tau_{ach} }} \\ \end{aligned} $$
(8)

where \( \tau_{nor} \) and \( \tau_{ach} \) are two time parameters.

Heart rate: HR potential \( \left( \psi \right) \) is linked with these chemical concentrations by an integrated model of the form.

$$ \frac{d\varphi }{dt} = H_{0} (1 + M_{S} C_{nor} - M_{P} C_{ach} ) $$
(9)

where

$$ \begin{aligned} M_{S} & = \frac{{\xi_{S}^{2} }}{{1 + \xi_{S}^{2} }} \\ M_{P} & = \frac{{\xi_{P}^{2} }}{{1 + \xi_{P}^{2} }} \\ \end{aligned} $$
(10)

where \( H_{0} \) denotes intrinsic HR, \( M_{s} \) and \( M_{p} \) represent the strength of the response to changes in the concentrations. \( \zeta_{s} \) and \( \xi_{p} \) are the two parameters used to constrain \( M_{s} \) and \( M_{p} \) in the interval [0, 1], in order to bound HR within physiological values.

A heartbeat occurs when \( \psi \) reaches 1, then is reset to 0. So the HR is defined as the following equation:

$$ HR = 1/(t_{\varphi = 1} - t_{\varphi = 0} ) $$
(11)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Sun, Y., Huang, Z., Meng, Y., Wu, J., Cai, X. (2019). An Improved Mathematical Model for the Autonomic Regulation of Cardiovascular System. In: Fortino, G., Wang, Z. (eds) Advances in Body Area Networks I. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-02819-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02819-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02818-3

  • Online ISBN: 978-3-030-02819-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics