Skip to main content

Marine Fungi Associated with Antarctic Macroalgae

  • Chapter
  • First Online:
The Ecological Role of Micro-organisms in the Antarctic Environment

Abstract

Fungi are well known for their important roles in terrestrial ecosystems, but filamentous and yeast forms are also active components of microbial communities from marine ecosystems. Marine fungi are particularly abundant and relevant in coastal systems where they can be found in association with large organic substrata, like seaweeds. Antarctica is a rather unexplored region of the planet that is being influenced by strong and rapid climate change. In the past decade, several efforts have been made to get a thorough inventory of marine fungi from different environments, with a particular emphasis on those associated with the large communities of seaweeds that abound in littoral and infralittoral ecosystems. The algicolous fungal communities obtained were characterized by a few dominant species and a large number of singletons, as well as a balance among endemic, indigenous, and cold-adapted cosmopolitan species. The long-term monitoring of this balance and the dynamics of richness, dominance, and distributional patterns of these algicolous fungal communities is proposed to understand and model the influence of climate change on the maritime Antarctic biota. In addition, several fungal isolates from marine Antarctic environments have shown great potential as producers of bioactive natural products and enzymes and may represent attractive sources of biotechnological products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenz, B. E., Held, B. W., Jurgens, J. A., Farrell, R. L., & Blanchette, R. A. (2006). Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Biochemistry, 38(10), 3057–3064.

    Article  CAS  Google Scholar 

  • Arenz, B. E., Blanchette, R. A., Farrell, R. L. (2014). Fungal diversity in Antarctic soils. In Antarctic terrestrial microbiology (pp. 35–53). Germany: Springer.

    Chapter  Google Scholar 

  • Azmi, O. R., & Seppelt, R. D. (1998). The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biology, 19(2), 92–100.

    Article  Google Scholar 

  • Bass, D., Howe, A., Brown, N., Barton, H., Demidova, H., Michele, H., Li, L., Sanders, H., Watkinson, S., Willcock, S., & Richards, T. A. (2007). Yeast forms dominate fungal diversity in the deep oceans. Proceedings of the Royal Society B, 274, 3069–3307.

    Article  CAS  Google Scholar 

  • Bridge, P. D., & Spooner, B. M. (2012). Non-lichenized Antarctic fungi: Transient visitors or members of a cryptic ecosystem? Fungal Ecology, 5(4), 381–394.

    Article  Google Scholar 

  • Bugni, T. S., & Ireland, C. M. (2004). Marine-derived fungi: A chemically and biologically diverse group of microorganisms. Natural Product Reports, 21(1), 143–163.

    Article  CAS  Google Scholar 

  • de Menezes, G. C., Godinho, V. M., Porto, B. A., Gonçalves, V. N., & Rosa, L. H. (2017). Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles, 21, 259–269.

    Article  Google Scholar 

  • Donachie, S. P., & Zdanowski, M. K. (1998). Potential digestive function of bacteria in krill Euphausia superba stomach. Aquatic Microbial Ecology, 14, 129–136.

    Article  Google Scholar 

  • Duarte, A. W. F., Passarini, M. R. Z., Delforno, T. P., Pellizzari, F. M., Cipro, C. V. Z., Montone, R. C., Petry, M. V., Putzke, J., Rosa, L. H., & Sette, L. D. (2016). Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environmental Microbiology Reports, 8, 874–888.

    Article  Google Scholar 

  • Ellis-Evans, J. C. (1996). Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity and Conservation, 5, 1395–1431.

    Article  Google Scholar 

  • Fell, J. W., & Hunter, I. L. (1968). Isolation of heterothallic yeast strains of Metschnikowia Kamienski and their mating reactions with Chlamydozyma wickerham spp. Antonie Van Leeuwenhoek, 34, 365–376.

    Article  CAS  Google Scholar 

  • Furbino, L. E., Godinho, V. M., Santiago, I. F., Pellizari, F. M., Alves, T. M., Zani, C. L., Junior, P. A. S., Romanha, A. J., Carvalho, A. G. O., Gil, L. H. V. G., Rosa, A. C., Minnis, A. M., & Rosa, L. H. (2014). Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microbial Ecology, 67, 775–787.

    Article  Google Scholar 

  • Furbino, L., Pellizzari, F. M., Neto, P. C., Rosa, C. A., & Rosa, L. H. (2017). Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biology. https://doi.org/10.1007/s00300-017-2213-1.

    Article  Google Scholar 

  • Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., & Hoyoux, A. (2000). Cold-adapted enzymes: From fundamentals to biotechnology. Trends in Biotechnology, 18, 103–107.

    Article  CAS  Google Scholar 

  • Glöckner, F. O., Stal, L. J., Sandaa, R. A., Gasol, J. M., O’Gara, F., Hernandez, F., Labrenz, M., Stoica, E., Varela, M. M., Bordalo, A., & Pitta, P. (2012). In J. B. Calewaert & N. McDonough (Eds.), Marine microbial diversity and its role in ecosystem functioning and environmental change, Marine Board Position Paper 17. Ostend: Marine Board-ESF.

    Google Scholar 

  • Godinho, V. M., Furbino, L., Santiago, I. F., Pelizzari, F. M., Yokoya, N. S., Pupo, D., Dicla, A., Alves, T. M., Junior, P. A., Romanha, A. J., Zani, C. L., Cantrell, C. L., Rosa, C. A., & Rosa, L. H. (2013). Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME, 7, 77–145.

    Article  Google Scholar 

  • Gonçalves, V. N., Vaz, A. B., Rosa, C. A., & Rosa, L. H. (2012). Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiology Ecology, 82(2), 459–471.

    Article  Google Scholar 

  • Gonçalves, V. N., Campos, L. S., Melo, I. S., Pellizari, V. H., Rosa, C. A., & Rosa, L. H. (2013). Penicillium solitum: A mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biology, 36, 1823–1831.

    Article  Google Scholar 

  • Gonçalves, V. N., Carvalho, C. R., Johann, S., Mendes, G., Alves, T. M., Zani, C. L., Junior, P. A. S., Murta, S. M. F., Romanha, A. J., Cantrell, C. L., Rosa, C. A., & Rosa, L. H. (2015). Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biology, 38, 1143–1152.

    Article  Google Scholar 

  • Gonçalves, V. N., Vitoreli, G. A., Menezes, G. C. A., Mendes, C. R. B., Secchi, E. R., Rosa, C. A., & Rosa, L. H. (2017). Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles, 21, 1005–1015.

    Article  Google Scholar 

  • Grasso, S., Bruni, V., & Maio, G. (1997). Marine fungi in Terra Nova Bay (Ross Sea, Antarctica). The New Microbiologica, 20, 371–376.

    CAS  PubMed  Google Scholar 

  • Henríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., Araya, I., Chávez, R., San-Martín, A., Darias, J., Darias, M. J., & Vaca, I. (2014). Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 30, 65–76.

    Article  Google Scholar 

  • Herrera, L. M., García-Laviña, C. X., Marizcurrena, J. J., Volonterio, O., de León, R. P., & Castro-Sowinski, S. (2017). Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biology, 40, 947–953.

    Article  Google Scholar 

  • Hyde, K. D., Jones, E. B. G., Leano, E., Pointing, S. B., Poonyth, A. D., & Vrijmoed, L. L. P. (1998). Role of fungi in marine ecosystems. Biodiversity and Conservation, 7, 1147–1161.

    Article  Google Scholar 

  • Johnson, T. W., & Sparrow, F. K. (1961). Fungi in oceans and estuaries. Fungi in oceans and estuaries. Science, 137, 662–663.

    Google Scholar 

  • Jones, G. E. B., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., & Pang, K. (2015). Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diversity, 73, 1–72.

    Article  Google Scholar 

  • Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology: The higher fungi. New York: Academy Press.

    Google Scholar 

  • Kohlmeyer, J., Volkmann-Kohlmeyer, B., & Newell, S. Y. (2004). Marine and estuarine mycelial Eumycota and Oomycota. In G. M. Mueller, G. G. Bills, & M. S. Foster (Eds.), Biodiversity of fungi: Inventory and monitoring methods. New York: Elsevier Academic Press.

    Google Scholar 

  • Loque, C. P., Medeiros, A. O., Pellizzari, F. M., Oliveira, E. C., Rosa, C. A., & Rosa, L. H. (2010). Fungal community associated with marine macroalgae from Antarctica. Polar Biology, 33, 641–648.

    Article  Google Scholar 

  • Mercantini, R., Marsella, R., & Cervellati, M. C. (1989). Keratinophilic fungi isolated from Antarctic soil. Mycopathologia, 106, 47–52.

    Article  CAS  Google Scholar 

  • Moore, J. K., Doney, S. C., Glover, D. M., & Fung, I. Y. (2002). Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Research, Part II, 49, 463–507.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., & Price, N. M. (2003). The biogeochemical cycles of trace metals in the oceans. Science, 300, 944.

    Article  CAS  Google Scholar 

  • Nedzarek, A., & Rakusa-Suszczewski, S. (2004). Decomposition of macroalgae and the release of nutrient Admiralty Bay, King George, Antarctica. Polar Biosci, 17, 26–35.

    Google Scholar 

  • Nelson, D. M., DeMaster, D. J., Dunbar, R. B., & Smith, W. O. J. (1996). Cycling of organic carbon and biogenic silica in the Southern Ocean: Estimates of water-column and sedimentary fluxes on the Ross Sea continental shelf. Journal of Geophysical Research, 101, 18519–18532.

    Article  CAS  Google Scholar 

  • Pellizzari, F., Silva, M. C., Silva, E. M., Medeiros, A., Oliveira, M. C., Yokoya, N. S., Rosa, L. H., & Colepicolo, P. (2017). Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: An updated database for environmental monitoring under climate change scenarios. Polar Biology, 40, 1671.

    Article  Google Scholar 

  • Raghukumar, S. (2017). Fungi in coastal and oceanic marine ecosystems. Marine Fungi (p. 378). Germany: Springer.

    Book  Google Scholar 

  • Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae-bacteria interactions: Evolution, ecology and emerging applications author links open overlay. Biotechnology Advances, 34, 14–39.

    Article  CAS  Google Scholar 

  • Richards, T. A., Jones, M. D., Leonard, G., & Bass, D. (2012). Marine fungi: Their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522.

    Article  Google Scholar 

  • Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and applied phycology (p. 566). Oxford: Blackwell Science Ltd.

    Google Scholar 

  • Rosa, L. H., Vaz, A. B., Caligiorne, R. B., Campolina, S., & Rosa, C. A. (2009). Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv (Poaceae). Polar Biology, 32, 161–167.

    Article  Google Scholar 

  • Ruisi, S., Barreca, D., Selbmann, L., Zucconi, L., & Onofri, S. (2007). Fungi in Antarctica. Reviews in Environmental Science and Biotechnology, 6, 127–141.

    Article  Google Scholar 

  • Santiago, I. F., Alves, T. M., Rabello, A., Junior, P. A. S., Romanha, A. J., Zani, C. L., Rosa, C. A., & Rosa, L. H. (2012). Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles, 16, 95–103.

    Article  Google Scholar 

  • Santiago, I. F., Soares, M. A., Rosa, C. A., & Rosa, L. H. (2015). Lichensphere: A protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles, 19, 1087–1097.

    Article  Google Scholar 

  • Santiago, I. F., Rosa, C. A., & Rosa, L. H. (2017). Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biology, 40, 177–183.

    Article  Google Scholar 

  • Stchigel, A. M., Josep, C. A. N. O., Mac Cormack, W., & Guarro, J. (2001). Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycological Research, 105, 377–382.

    Article  CAS  Google Scholar 

  • Suryanarayanan, T. S. (2012). Fungal endosymbionts of seaweeds. In Biology of marine fungi (pp. 53–69). Germany: Springer.

    Google Scholar 

  • Suryanarayanan, T. S., Venkatachalam, A., Thirunavukkarasu, N., Ravishankar, J. P., Doble, M., & Geetha, V. (2010). Internal mycobiota of marine macroalgae from the Tamilnadu coast: Distribution, diversity and biotechnological potential. Botanica Marina, 53, 457–468.

    Article  Google Scholar 

  • Vaz, A. B., Rosa, L. H., Vieira, M. L., Garcia, V. D., Brandão, L. R., Teixeira, L. C., & Rosa, C. A. (2011). The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian Journal of Microbiology, 42, 937–947.

    Article  CAS  Google Scholar 

  • Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., & Ward, B. (2013). The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Phil Trans R Soc B, 368, 0121.

    Article  Google Scholar 

  • Wiencke, C., & Amsler, C. D. (2012). Seaweeds and their communities in polar regions. Seaweed biology: Novel insights into ecophysiology, ecology and utilization (p. 493). Germany: Springer.

    Google Scholar 

  • Wiencke, C., & Clayton, M. N. (2002). Antarctic seaweeds. In J. W. Wagele (Ed.), Synopses of the Antarctic benthos (p. 239). Germany: Lichtensein.

    Google Scholar 

  • Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekemd’Acoz CD Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UK, 66–73.

    Google Scholar 

  • Zuccaro, A., Schulz, B., & Mitchell, J. I. (2003). Molecular detection of ascomycetes associated with Fucus serratus. Mycological Research, 107, 1451–1466.

    Article  CAS  Google Scholar 

  • Zucconi, L., Selbmann, L., Buzzini, P., Turchetti, B., Guglielmin, M., Frisvad, J. C., & Onofri, S. (2012). Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biology, 35, 749–757.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogaki, M.B., de Paula, M.T., Ruas, D., Pellizzari, F.M., García-Laviña, C.X., Rosa, L.H. (2019). Marine Fungi Associated with Antarctic Macroalgae. In: Castro-Sowinski, S. (eds) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02786-5_11

Download citation

Publish with us

Policies and ethics