Skip to main content

Stress, Vulnerability, and Resilience

  • Chapter
  • First Online:
Stress and Somatic Symptoms
  • 1343 Accesses

Abstract

Causes of stress are classified into psychosocial factors and environmental (bioecological) factors. Vulnerability refers to poorly adapting to stressors and showing inappropriate responses that can become persistent states of stress. In contrast, resilience is linked to being able to perceive stressful events in less threatening ways, promoting adaptive coping strategies. Differences in individual vulnerability and resilience occur across sex, age, and culture. The underlying mechanisms of vulnerability and resilience are known to depend on a combination of genetic and nongenetic factors. Psychosocial factors, behavioral factors, neuroendocrine stress responses, genetic and epigenetic mechanisms, and neural circuitry are likely to be involved in vulnerability and resilience to stress. In particular, the functional capacity of the brain structures involved in the integrated circuits that mediate mood and emotion determines stress resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg JS. Coping with stress: a practical guide. Dubuque: Wm C Publishers; 1990.

    Google Scholar 

  2. Selye H. The stress of life. New York: McGraw-Hill; 1956.

    Google Scholar 

  3. Derogatis LR, Coons HL. Self-report measures of stress. In: Goldberg L, Breznitz S, editors. Handbook of stress – theoretical and clinical aspects. 2nd ed. New York: The Free Press; 1993.

    Google Scholar 

  4. Lipowski ZJ. Psychosomatic medicine and liaison psychiatry. New York: Plenum Medical Book Co; 1985.

    Book  Google Scholar 

  5. Lazarus RS. Patterns of adjustment. New York: McGraw-Hill; 1976.

    Google Scholar 

  6. Lazarus RS. The stress and coping paradigm. Edisdorfer C, Cohen D, Kleinman A, et al.. Models for clinical psychopathology. New York; Spectrum; 1981

    Google Scholar 

  7. Reiser MF. Psychophysiology of stress and its sequelae. In: Reiser MF, editor. Mind, brain, body: toward a convergence of psychoanalysis and neurobiology. New York: Basic Books; 1984.

    Google Scholar 

  8. Selye H. Stress without distress. New York: J.B. Lippincott; 1974.

    Google Scholar 

  9. Rice PL. Stress and health: principles and practice for coping and wellness. Pacific Grove: Brooks/Cole Publishing Co; 1987.

    Google Scholar 

  10. Girdano DA, Everly G. Controlling stress and tension: a holistic approach. New Jersey: Prentice-Hall; 1979.

    Google Scholar 

  11. Del Giudice M, Ellis BJ, Shirtcliff EA. The adaptive calibration model of stress responsivity. Neurosci Biobehav Rev. 2011;35:1562–92.

    Article  PubMed  Google Scholar 

  12. Rutter M. Implications of resilience concepts for scientific understanding. Ann N Y Acad Sci. 2006;1094:1–12.

    Article  PubMed  Google Scholar 

  13. Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and vulnerability. Neuron. 2012;75:747–61.

    Article  PubMed  Google Scholar 

  14. Masten AS. Ordinary magic. Resilience processes in development. Am Psychol. 2001;56:227–38.

    Article  PubMed  Google Scholar 

  15. Masten AS, Coatsworth JD. The development of competence in favorable and unfavorable environments. Lessons from research on successful children. Am Psychol. 1998;53:205–20.

    Article  PubMed  Google Scholar 

  16. Rutter M. Resilience in the face of adversity. Protective factors and resistance to psychiatric disorder. Br J Psychiatry. 1985;147:598–611.

    Article  PubMed  Google Scholar 

  17. Yam KY, Naninck EF, Schmidt MV, et al. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms. Stress. 2015;18:328–42.

    Article  PubMed  Google Scholar 

  18. Santarelli S, Zimmermann C, Kalideris G, et al. An adverse early life environment can enhance stress resilience in adulthood. Psychoneuroendocrinology. 2017;78:213–21.

    Article  PubMed  Google Scholar 

  19. Oomen CA, Soeters H, Audureau N, et al. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci. 2010;30:6635–45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol. 2005;1:255–91.

    Article  PubMed  Google Scholar 

  21. Sherrer MV. The role of cognitive appraisal in adaptation to traumatic stress in adults with serious mental illness: a critical review. Trauma Violence Abuse. 2011;12:151–67.

    Article  PubMed  Google Scholar 

  22. Antonovsky A. Health, stress and coping. San Francisco: Jossey-Bass; 1982.

    Google Scholar 

  23. Cotton DHG. Stress management: an integrated approach to therapy. New York: Brunner/Mazel; 1990. p. 80–110.

    Google Scholar 

  24. Ong AD, Bergeman CS, Bisconti TL, et al. Psychological resilience, positive emotions, and successful adaptation to stress in later life. J Pers Soc Psychol. 2006;91:730–49.

    Article  PubMed  Google Scholar 

  25. Tugade MM, Fredrickson BL. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J Pers Soc Psychol. 2004;86:320–33.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fredrickson BL. The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. Am Psychol. 2001;56:218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alim TN, Feder A, Graves RE, et al. Trauma, resilience, and recovery in a high-risk African-American population. Am J Psychiatry. 2008;165:1566–75.

    Article  PubMed  Google Scholar 

  28. Ryff CD, Keyes CL. The structure of psychological well-being revisited. J Pers Soc Psychol. 1995;69:719–27.

    Article  PubMed  Google Scholar 

  29. Pargement KI, Koenig BW, Perez L. Patterns of positive and negative religious coping with major life stressors. J Sci Study Relig. 1998;37:710–24.

    Article  Google Scholar 

  30. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev/Neurosci. 2009;10:446–57.

    Article  Google Scholar 

  31. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49:1023–39.

    Article  PubMed  Google Scholar 

  32. Karlamangla AS, Singer BH, McEwen BS, et al. Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J Clin Epidemiol. 2002;55:696–710.

    Article  PubMed  Google Scholar 

  33. McEwen BS, Milner TA. Hippocampal formation: shedding light on the influence of sex and stress on the brain. Brain Res Rev. 2007;55:343–55.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brown ES, Woolston DJ, Frol AB. Amygdala volume in patients receiving chronic corticosteroid therapy. Biol Psychiatry. 2008;63:705–9.

    Article  PubMed  Google Scholar 

  35. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75.

    Article  PubMed  Google Scholar 

  36. Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry. 2004;161:195–216.

    Article  PubMed  Google Scholar 

  37. de Kloet ER, Deriik RH, Meijer OC. Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nat Clin Pract Endocrinol Metab. 2007;3:168–79.

    Article  PubMed  Google Scholar 

  38. Charney DS. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr Scand Suppl. 2003;417:38–50.

    Article  Google Scholar 

  39. Sajdyk TJ, Shekhar A, Gehlert DR. Interactions between NPY and CRF in the amygdala to regulate emotionality. Neuropeptides. 2004;38:225–34.

    Article  PubMed  Google Scholar 

  40. Morgan CA, Wang S, Southwick SM, et al. Plasma neuropeptide Y concentrations in humans exposed to military survival training. Biol Psychiatry. 2000;47:902–9.

    Article  PubMed  Google Scholar 

  41. Fuller JL, Thompson WR. Foundations of behavior genetics. St. Louis: Mosby; 1978.

    Google Scholar 

  42. McIlwrick S, Rechenberg A, Matthes M, et al. Genetic predisposition for high stress reactivity amplifies effects of early-life adversity. Psychoneuroendocrinology. 2016;70:85–97.

    Article  PubMed  Google Scholar 

  43. Bradley RG, Binder EB, Epstein MP, et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry. 2008;65:190–200.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–9.

    Article  PubMed  Google Scholar 

  45. Kendler KS, Kuhn JW, Vittum J, et al. The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch Gen Psychiatry. 2005;62:529–35.

    Article  PubMed  Google Scholar 

  46. Gillespie NA, Whitfield JB, Williams B, et al. The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression. Psychol Med. 2005;35:101–11.

    Article  PubMed  Google Scholar 

  47. Stein MB, Campbell-Sills L, Gelernter J. Genetic variation in 5-HTTLPR is associated with emotional resilience. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:900–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heinz A, Smolka MN. The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Rev Neurosci. 2006;17:359–67.

    Article  PubMed  Google Scholar 

  49. Zhou Z, Zhu G, Hariri AR, et al. Genetic variation in human NPY expression affects stress response and emotion. Nature. 2008;452:997–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jabbi M, Korf J, Kema IP, et al. Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA. Mol Psychiatry. 2007;12:483–90.

    Article  PubMed  Google Scholar 

  51. Smolka MN, Buhler M, Schumann G, et al. Gene-gene effects on central processing of aversive stimuli. Mol Psychiatry. 2007;12:307–17.

    Article  PubMed  Google Scholar 

  52. Mandelli L, Serretti A, Marino E, et al. Interaction between serotonin transporter gene, catechol-O-methyltransferase gene and stressful life events in mood disorders. Int J Neuropsychopharmacol. 2007;10:437–47.

    Article  PubMed  Google Scholar 

  53. Kaufman J, Yang B-Z, Douglas-Palumberi H, et al. Social supports and serotonin transporter gene moderate depression in maltreated children. Proc Natl Acad Sci U S A. 2004;101:17316–21.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim JM, Stewart R, Kim SW, et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol Psychiatry. 2007;62:423–8.

    Article  PubMed  Google Scholar 

  55. Kaufman J, Yang B-Z, Douglas-Palumberi H, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry. 2006;59:673–80.

    Article  PubMed  Google Scholar 

  56. Franklin TB, Mansuy IM. The involvement of epigenetic defects in mental retardation. Neurobiol Learn Mem. 2011;96:61–7.

    Article  PubMed  Google Scholar 

  57. Kubota T, Miyake K, Hirasawa T. Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics. 2012;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McEwen BS, Eiland L, Hunter RG, et al. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology. 2012;62:3–12.

    Article  PubMed  Google Scholar 

  59. Leigh H. Genes, memes, culture, and psychosomatic medicine: an integrative model. In: Koh KB, editor. Somatization and psychosomatic symptoms. New York: Springer; 2013.

    Google Scholar 

  60. Krishnan V, Han M-H, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    Article  PubMed  Google Scholar 

  61. Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 1994;17:379–89.

    Article  PubMed  Google Scholar 

  62. Berton O, Covington IIIHE, Ebner K, et al. Induction of FosB in the periaqueductal gray by stress promotes active coping responses. Neuron. 2007;55:289–300.

    Article  PubMed  Google Scholar 

  63. Dedovic K, Renwick R, Najmeh KM, et al. The Montreal imaging stress task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J Psychiatry Neurosci. 2005;30:319–25.

    PubMed  PubMed Central  Google Scholar 

  64. Delgado MR, Olsson A, Phelps EA. Extending animal models of fear conditioning to humans. Biol Psychol. 2006;73:39–48.

    Article  PubMed  Google Scholar 

  65. Milad MR, Quinn BT, Pitman RK, et al. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci U S A. 2005;102:10706–11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schiller D, Levy I, Niv Y, et al. From fear to safety and back: reversal of fear in the human brain. J Neurosci. 2008;28:11517–25.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pizzagalli DA, Holmes AJ, Dillon DJ, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated subjects with major depressive disorder. Am J Psychiatry. 2008;166:702–10.

    Article  Google Scholar 

  68. Sailer U, Robinson S, Fischmeister F, et al. Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia. 2008;46:2836–44.

    Article  PubMed  Google Scholar 

  69. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implication for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sharot T, Riccardi AM, Raio CM, et al. Neural mechanisms mediating optimism bias. Nature. 2007;450:102–5.

    Article  PubMed  Google Scholar 

  71. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci. 2007;10:1116–24.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Goldin PR, McRae K, Ramel W, et al. The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiatry. 2008;63:577–86.

    Article  PubMed  Google Scholar 

  73. Ochsner KN, Ray RD, Cooper JC, et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage. 2004;23:483–99.

    Article  PubMed  Google Scholar 

  74. New AS, Fan J, Murrough JW, et al. A functional magnetic resonance imaging study of deliberate emotion regulation in PTSD and resilience. Biol Psychiatry. 2009;66:656–64.

    Article  PubMed  Google Scholar 

  75. Iarocci G, Yager J, Elfers T. What gene-environment interactions can tell us about social competence in typical and atypical populations. Brain Cogn. 2007;65:112–7.

    Article  PubMed  Google Scholar 

  76. Storm EE, Tecott LH. Social circuits: peptidergic regulation of mammalian social behavior. Neuron. 2005;47:483–6.

    Article  PubMed  Google Scholar 

  77. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.

    Article  PubMed  Google Scholar 

  78. Pfeifer JH, Iacoboni M, Mazziotta JC, et al. Mirroring others’ emotions relates to empathy and interpersonal competence in children. NeuroImage. 2008;39:2067–85.

    Article  Google Scholar 

  79. Domes G, Heinrichs M, Michel A, et al. Oxytocin improves mind-reading in humans. Biol Psychiatry. 2007;61:731–3.

    Article  PubMed  Google Scholar 

  80. Skuse DH, Gallagher L. Dopaminergic neuropeptide interactions in the social brain. Trends Cogn Sci. 2009;13:27–35.

    Article  PubMed  Google Scholar 

  81. Rilling JK, Gutman DA, Zeh TR, et al. A neural basis for social cooperation. Neuron. 2002;35:395–405.

    Article  PubMed  Google Scholar 

  82. Coan JA, Schaefer HS, Davidson RJ. Lending a hand: social regulation of the neural response to threat. Psychol Sci. 2006;17:1032–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koh, K.B. (2018). Stress, Vulnerability, and Resilience. In: Stress and Somatic Symptoms. Springer, Cham. https://doi.org/10.1007/978-3-030-02783-4_1

Download citation

Publish with us

Policies and ethics