Skip to main content

Molecular Docking

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume I

Abstract

Molecular docking (MD) is one of the commonly used method to predict the orientation of two molecules bound in a stable complex. Elucidation of knowledge about the preferred molecular orientation helps in predicting the binding affinity between two test molecules. MD is the most widely used method in structure-based drug designing and also in biochemical investigations. There are two major steps involved in MD procedure: first is a search algorithm and second is a scoring function. The search algorithm can differentiate between conformational changes of the ligand through one of the techniques above, while scoring function usually classifies different shapes retrieved by the search algorithm. The most widely used computational programs in docking procedure are DOCK, GOLD, AutoDock, Surflex, FlexX, FTDOCK, etc. These methods differ from each other in implementation of the search algorithms and their scoring function differences. In this current chapter we demonstrated the molecular docking working procedure using an easily accessible and easy-to-use AutoDock software. A brief description of different experimental stages and interpretation of results are explained with the help of different screenshots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeniyi AA, Ajibade PA (2013) Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules 18(4):3760–3778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banaganapalli B, Mulakayala C, D G, Mulakayala N, Pulaganti M, Shaik NA, Cm A, Rao RM, Al-Aama JY, Chitta SK (2013a) Synthesis and biological activity of new resveratrol derivative and molecular docking: dynamics studies on NFkB. Appl Biochem Biotechnol 171(7):1639–1657

    CAS  PubMed  Google Scholar 

  • Banaganapalli B, Mulakayala C, Pulaganti M, Mulakayala N, Anuradha CM, Suresh Kumar C, Shaik NA, Yousuf Al-Aama J, Gudla D (2013b) Experimental and computational studies on newly synthesized resveratrol derivative: a new method for cancer chemoprevention and therapeutics? OMICS 17(11):568–583

    CAS  PubMed  Google Scholar 

  • Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78

    CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G (2017) AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol Biol 1598:391–403

    CAS  PubMed  Google Scholar 

  • Ewing SA, Dawson JE, Panciera RJ, Mathew JS, Pratt KW, Katavolos P, Telford SR 3rd (1997) Dogs infected with a human granulocytotropic Ehrlichia spp. (Rickettsiales: Ehrlichieae). J Med Entomol 34(6):710–718

    CAS  PubMed  Google Scholar 

  • Filikov AV, Mohan V, Vickers TA, Griffey RH, Cook PD, Abagyan RA, James TL (2000) Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput Aided Mol Des 14(6):593–610

    CAS  PubMed  Google Scholar 

  • Hindle SA, Rarey M, Buning C, Lengaue T (2002) Flexible docking under pharmacophore type constraints. J Comput Aided Mol Des 16(2):129–149

    CAS  PubMed  Google Scholar 

  • James TL, Lind KE, Filikov AV, Mujeeb A (2000) Three-dimensional RNA structure-based drug discovery. J Biomol Struct Dyn 17(Suppl 1):201–205

    PubMed  Google Scholar 

  • Jiang S, Huang K, Liu W, Fu F, Xu J (2015) Combined autodock and comparative molecular field analysis study on predicting 5-lipoxygenase inhibitory activity of flavonoids isolated from Spatholobus suberectus Dunn. Z Naturforsch C 70(3–4):103–113

    CAS  PubMed  Google Scholar 

  • Judson RS (1996) Genetic algorithms and their uses in chemistry. In: Boyd DB, Lipkowitz K (eds) Reviews in computational chemistry, vol 10. Wiley, New York, pp 1–73

    Google Scholar 

  • Kramer B, Rarey M, Lengauer T (1997) CASP2 experiences with docking flexible ligands using FlexX. Proteins (1):221–225

    Google Scholar 

  • Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37(2):228–241

    CAS  PubMed  Google Scholar 

  • Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257(5073):1078–1082

    CAS  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10(4):293–304

    CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking, Curr Protoc bioinformatics Chapter 8. Unitas 8:14

    Google Scholar 

  • Schellhammer I, Rarey M (2004) FlexX-Scan: fast, structure-based virtual screening. Proteins 57(3):504–517

    CAS  PubMed  Google Scholar 

  • Spitzer R, Jain AN (2012) Surflex-Dock: Docking benchmarks and real-world application. J Comput Aided Mol Des 26(6):687–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16(3):151–166

    CAS  PubMed  Google Scholar 

  • Vicente J, Chicote MT, Guerrero R, Jones PG, Ramirez De Arellano MC (1997) Gold(I) Complexes with N-Donor Ligands. 2.1 Reactions of Ammonium Salts with [Au(acac-ÎşC2)(PR3)] To Give [Au(NH3)L]+, [(AuL)2(ÎĽ2-NH2)]+, [(AuL)4(ÎĽ4-N)]+, or [(AuL)3(ÎĽ3-O)]+. A New and Facile Synthesis of [Au(NH3)2]+ Salts. Crystal Structure of [{AuP(C6H4OMe-4)3}3(ÎĽ3-O)]CF3SO3. Inorg Chem 36(20):4438–4443

    CAS  PubMed  Google Scholar 

  • Westhead DR, Clark DE, Murray CW (1997) A comparison of heuristic search algorithms for molecular docking. J Comput Aided Mol Des 11(3):209–228

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Ahmad Shaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banaganapalli, B. et al. (2019). Molecular Docking. In: Shaik, N., Hakeem, K., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume I. Springer, Cham. https://doi.org/10.1007/978-3-030-02634-9_15

Download citation

Publish with us

Policies and ethics