Skip to main content

The Microvascular Pericyte: Approaches to Isolation, Characterization, and Cultivation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1109))

Abstract

The microvascular pericyte was identified in 1873 by the French scientist Charles Benjamin Rouget and originally called the Rouget cell (Rouget.Sciences 88:916–8, 1879). However, it was not until the early 1900s that Rouget’s work was confirmed, and the Rouget cell renamed the pericyte by virtue of its peri-endothelial location (Dore. Brit J Dermatol 35:398–404, 1923; Zimmermann. Z Anat Entwicklungsgesch 68:3–109, 1923). Over the years a large number of publications have emerged, but the pericyte has remained a truly enigmatic cell. This is due, in part, by the paucity of easy and reliable methods to isolate and characterize the cell as well as its heterogeneity and pluripotent characteristics. However, more recent advances in molecular genetics and development of novel cell isolation and imaging techniques have enable scientists to more readily define pericyte function. This chapter will discuss general approaches to the isolation, characterization, and propagation of primary pericytes in the establishment of cell lines. We will attempt to dispel misinterpretations about the pericyte that cloud the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 15 March 2019

    The author has spotted an error on page 61, in the middle of the second paragraph from bottom. The content has been revised and the corrected version is as follows:

References

  1. Rouget C-MB (1879) Sur la contractilité capillaires sanguins. Comptes rendus de l’Académie des. Sciences 88:916–918

    Google Scholar 

  2. Dore SE (1923) On the contractility and nervous supply of the capillaries. Brit J Dermatol 35:398–404

    Article  Google Scholar 

  3. Zimmermann KW (1923) Der feinere bau der blutcapillares. Z Anat Entwicklungsgesch 68:3–109

    Article  Google Scholar 

  4. Buzney SM, Massicotte SJ, Hetu N, Zetter BR (1983) Retinal vascular endothelial cells and pericytes. Differential growth characteristics. IOVS 24(4):470–480

    CAS  Google Scholar 

  5. Gitlin JD, D’Amore PA (1983) Culture of retinal capillary cells using selective growth media. Microvasc Res 1:74–80

    Article  Google Scholar 

  6. Herman IM, Jacobson S (1988) In situ analysis of microvascular pericytes in hypertensive rat brains. Tissue Cell 1:1–12

    Article  Google Scholar 

  7. Sussman I, Carson MP, Schultz V et al (1988) Chronic exposure to high glucose decreases myo-inositol in cultured cerebral microvascular pericytes but not in endothelium. Diabetologia 10:771–775

    Article  Google Scholar 

  8. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin aM, and macrophage marker ED-2. Microvasc Res 52:127–142

    Article  CAS  PubMed  Google Scholar 

  9. Balabanov R, Dore-Duffy P (1988) Role of the CNS microvascular pericyte in the blood brain barrier. Neurosci Res 6:637–644

    Google Scholar 

  10. Choudry AR (2017) Cell isolation and separation techniques. Mater Methods 7:2260–2285

    Google Scholar 

  11. Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 31:999–1007

    CAS  PubMed  Google Scholar 

  12. Cuthbertson RA, Mandel TE (1986) Anatomy of the mouse retina. Capillary basement membrane thickness. Invest Opthamol 27:1653–1658

    CAS  Google Scholar 

  13. Geevarghese A, Herman IM (2014) Pericyte-endothelial cross-talk: implications and opportunities for advanced cellular therapies. Transl Res 163(4):296–306

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675. https://doi.org/10.1007/978-1-4614-3209-8_84

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P (2011) The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Luo Y, Hui H et al (2017) CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development. PNAS 114:E7622–E7631. https://doi.org/10.1073/pnas.171084811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nayak RC, Herman IM (2001) Bovine retinal microvascular pericytes: isolation, propagation and identification. In: Murray C (ed) Methods in molecular medicine: angiogenesis protocols. Humana Press Inc., Totowa, pp 247–263

    Google Scholar 

  18. Crouch EE, Doetsch F (2018) FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat Protoc 13(4):738–751. https://doi.org/10.1038/nprot.2017.158

    Article  CAS  PubMed  Google Scholar 

  19. Epshtein A, Sakhneny L, Landsman L (2017) Isolating and analyzing cells of the pancreas mesenchyme by flow cytometry. J Vis Exp 119:55344. https://doi.org/10.3791/55344

    Article  CAS  Google Scholar 

  20. Boroujerdi A, Tigges U, Welser-Alves JV, Milner R (2014) Isolation and culture of primary pericytes from mouse brain. In: Milner R (ed) Cerebral angiogenesis. Methods in molecular biology, vol 1135. Humana Press, New York, pp 383–392

    Chapter  Google Scholar 

  21. Nees S, Weiss DR, Senftl A, Knott M, Förch S, Schnurr M, Weyrich P, Juchem G (2012) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302(1):H69–H84. https://doi.org/10.1152/ajpheart.00359.2011

    Article  CAS  PubMed  Google Scholar 

  22. Dore-Duffy P (2003) Isolation and characterization of cerebral microvascular pericytes. Methods Mol Med 89:375–382. https://doi.org/10.1385/1-59259-419-0:375

    Article  PubMed  Google Scholar 

  23. Chen WC, Saparov A, Corselli M et al (2014) Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle. J Vis Exp (90):e51195. https://doi.org/10.3791/51195

  24. Lykkemark S, Mandrup OA, Jensen MB et al (2017) A novel excision selection method for isolation of antibodies binding antigens expressed specifically by rare cells in tissue sections. Nucleic Acids Res 45(11):e107. https://doi.org/10.1093/nar/gkx207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomsen LB, Burkhart A, Moos T (2015) A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS One 10(8):e0134765. https://doi.org/10.1371/journal.pone.0134765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valente S, Alviano F, Ciavarella C et al (2014) Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years. Stem Cell Res Ther 5(1):8. https://doi.org/10.1186/scrt397

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wysocki LI, Sato VL (1978) Panning for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A 75:2844–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou L, Sohet F, Daneman R (2014) Purification of pericytes from rodent optic nerve by immunopanning. Cold Spring Harb Protoc 2014(6):608–617. https://doi.org/10.1101/pdb.prot074955

    Article  PubMed  Google Scholar 

  29. Zhou L, Sohet F, Daneman R (2014) Purification and culture of central nervous system pericytes. Cold Spring Harb Protoc 2014(6):581–583. https://doi.org/10.1101/pdb.top070888

    Article  PubMed  Google Scholar 

  30. Dore-Duffy P, Mehedi A, Wang X, Gow A (2011) Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent. Microvasc Res 82:18–27. https://doi.org/10.1016/j.mvr.2011.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crouch EE, Doetsch F (2014) Isolation and culture of primary pericytes from mouse brain. Methods Mol Biol 1135:383–392. https://doi.org/10.1007/978-1-4939-0320-7_31

    Article  CAS  Google Scholar 

  32. D’Amore PA (1990) Culture and study of pericytes. In: Piper HM (ed) Cell culture techniques in heart and vessel research. Springer, Berlin. https://doi.org/10.1007/978-3-642-75262-9_20

    Chapter  Google Scholar 

  33. Unger RE, Oltrogge JB, Von Briesen H et al (2002) Isolation and molecular characterization of brain microvascular endothelial cells from human brain tumors. In Vitro Cell Dev Biol Anim 38(5):273–281

    Article  PubMed  Google Scholar 

  34. Wu Z, Hofman F, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130:53–63

    Article  CAS  PubMed  Google Scholar 

  35. Nirwane A, Gautam J, Yao Y (2017) Isolation of type I and type II pericytes from mouse skeletal muscles. J Vis Exp (123). https://doi.org/10.3791/55904

  36. Harik SI, Doull GH, Dick AP (1985) Specific ouabain binding to the brain microvessels and choroid plexus. JCBFM 5:156–160

    CAS  Google Scholar 

  37. Joo F, Karnushina I (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48

    CAS  PubMed  Google Scholar 

  38. DeBault LE, Kahn LE, Frommes SP et al (1979) In Vitro 15(7):473–487. https://doi.org/10.1007/BF02618149

    Article  CAS  PubMed  Google Scholar 

  39. Bowman PD, Betz AL, Jerry DD et al (1981) Primary culture of capillary endothelium from the rat brain. In Vitro 17(4):353–362

    Article  CAS  PubMed  Google Scholar 

  40. Boulay AC, Saubaméa B, Declèves X et al (2015) Purification of mouse brain vessels. J Vis Exp (105):e53208. https://doi.org/10.3791/53208

  41. White FP, Dutton GR, Norenberg MD (1981) Microvessels isolated from rat brain: localization of astrocyte processes by immunohistochemical techniques. J Neurochem 36:328–332

    Article  CAS  PubMed  Google Scholar 

  42. Murray JC, Hewett PW (1993) Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell Dev Biol Anim 29A:823–830

    PubMed  Google Scholar 

  43. Hayashi K, Epstein M, Loutzenhiser R (1989) Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res 65:1475–1484

    Article  CAS  PubMed  Google Scholar 

  44. Davison PM, Bensch K, Karasek MA (1980) Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J Invest Dermatol 75(10):316–321

    Article  CAS  PubMed  Google Scholar 

  45. Nees S, Weiss DR, Senftl A et al (2012) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302(1):H69–H84. https://doi.org/10.1152/ajpheart.00359.2011

    Article  CAS  PubMed  Google Scholar 

  46. Nunes SS, Krishman L, Gerard CS et al (2010) Angiogenic potential of microvascular fragments is independent on the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17:557–567

    PubMed  PubMed Central  Google Scholar 

  47. Asashima T, Lizasa H, Terasaki T et al (2002) Newly developed rat brain pericyte cell line, TR-PCT1, responds to transforming growth factor-beta1 and beta- glycerophosphate. Eur J Cell Biol 81:145–152

    Article  CAS  PubMed  Google Scholar 

  48. Berrone E, Beltramo E, Buttiglieri S et al (2009) Establishment and characterization of a human retinal pericyte line: a novel tool for the study of diabetic retinopathy. Int J Mol Med 23:373–378

    CAS  PubMed  Google Scholar 

  49. Jat PS, Noble MD, Ataliotis P et al (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci U S A 88:5096–5100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noble M (1992) From chance to choice in the generation of neural cell lines. Brain Pathol 2:39–46

    CAS  PubMed  Google Scholar 

  51. Barber RD, Hendereson RM (1996) Inhibition by P1075 and pinacidil of calcium-independent chloride conductance in conditionally-immortal renal glomerular mesangial cells. Br J Pharmacol 119:772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dennis JE, Caplan AI (1996) Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2K(b)-tsA58 transgenic mouse. J Cell Physiol 167:523–538

    Article  CAS  PubMed  Google Scholar 

  53. Kanda S, Landgren E, Ljungstrom M et al (1996) Fibroblast growth factor receptor 1-induced differentiation of endothelial cell line established from tsA58 large T transgenic mice. Cell Growth Differ 7:383–395

    CAS  PubMed  Google Scholar 

  54. Walther N, Jansen M, Ergun S et al (1996) Sertoli cell lines established from H-2Kb-tsA58 transgenic mice differentially regulate the expression of cell-specific genes. Exp Cell Res 225:411–421

    Article  CAS  PubMed  Google Scholar 

  55. Barald KF, Lindberg KH, Hardiman K et al (1997) Immortalized cell lines from embryonic avian and murine otocysts: tools for molecular studies of the developing inner ear. Int J Dev Neurosci 15:523–540

    Article  CAS  PubMed  Google Scholar 

  56. Morgan JE, Beauchamp JR, Pagel CN et al (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162:486–498

    Google Scholar 

  57. Ehler E, Jat PS, Noble MD et al (1995) Vascular smooth muscle cells of H-2Kb-tsA58 transgenic mice: characterization of cell lines with distinct properties. Circulation 92:3289–3296

    Article  CAS  PubMed  Google Scholar 

  58. Whitehead RH, Van Eeden PE, Noble MD et al (1993) Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 transgenic mice. Proc Natl Acad Sci U S A 90(2):587–591

    Google Scholar 

  59. Kershaw TR, Rashid Doubell F et al (1994) Immunocharacterization of H-2Kb-tsA58 transgenic mouse hippocampal neuroepithelial cells. Neuroreport 5:2197–2200

    Article  CAS  PubMed  Google Scholar 

  60. Whitehead RH, Joseph JL (1994) Derivation of conditionally immortalized cell lines containing the Min mutation from the normal colonic mucosa and other tissues of an ‘Immorto-mouse’/Min hybrid. Epithelial Cell Biol 3:19–125

    Google Scholar 

  61. Paradis K, Le ONL, Russo PH et al (1995) Characterization and response to interleukin 1 and tumor necrosis factor of immortalized murine biliary epithelial cells. Gastroenterology 109:1308–1315

    Article  CAS  PubMed  Google Scholar 

  62. Groves AK, Entwistle A, Jat PS et al (1993) The characterization of astrocyte cell lines that display properties of glial scar tissue. Dev Biol 159(1):87–104

    Article  CAS  PubMed  Google Scholar 

  63. Chambers TJ, Owens JM, Hattersley G et al (1993) Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse. Proc Natl Acad Sci U S A 90:5578–5582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Holley MC, Lawler PW (1997) Production of conditionally immortalized cell lines from a transgenic mouse. Audiol Neurootol 2:25–35

    Article  CAS  PubMed  Google Scholar 

  65. Greenwood-Goodwin M, Yang J, Hassanipour M et al (2016) A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 6:24403. https://doi.org/10.1038/srep24403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Almeida M, Garcia-Montero A, Orfao A (2014) Cell purification: a new challenge for biobanks. Pathobiology 81:261–275

    Article  CAS  PubMed  Google Scholar 

  67. Ge S, Pachter JS (2006) Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 177:209–214

    Article  CAS  PubMed  Google Scholar 

  68. Hirase H, Creso J, Singleton M et al (2004) Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia 46:95–100

    Article  PubMed  Google Scholar 

  69. Fernández-Klett F, Offenhauser N, Dirnagl U et al (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. PNAS 107:22290–22295

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cho EE, Drazic J, Ganguly M et al (2011) Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood–brain barrier opening. J Cereb Blood Flow Metab 31:1852–1862

    Article  PubMed  PubMed Central  Google Scholar 

  71. Berthiaume AA, Grant RI, McDowell KP et al (2018) Dynamic remodeling of pericytes in vivo maintains pericyte coverage in adult mouse brain. Cell Rep 22:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hill RA, Damisah EC, Chen F et al (2017) Targeted two-photon chemical apoptotic ablation of defined cell types in vivo. Nat Commun 8(15837). https://doi.org/10.1038/ncomms15837

  73. Wu J, Chen Q, Lin JM (2017) Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142:421–441

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y, Li P, Huang Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14:626–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shields WC IV, Reyes CD, Lopez CP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from bulk to rare cell isolation. Lab Chip 15:1230–1249

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cheng S, Xie M, Xu J et al (2016) High-efficiency capture of individual and cluster of circulating tumor cells by a microchip embedded with three-dimensional poly(dimethylsiloxane) scaffold. Anal Chem 88:6773–6780

    Article  CAS  PubMed  Google Scholar 

  77. Gao Y, Li W, Pappas D (2013) Recent advances in microfluidic cell separations. Analyst 138:4714–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang JD, El-Soyet K, Khanafer K et al (2016) Organization of endothelial cells, pericytes, and astrocytes into a 3D in vitro model of the blood brain barrier. Mol Pharm 13:895–906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Dore-Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dore-Duffy, P., Esen, N. (2018). The Microvascular Pericyte: Approaches to Isolation, Characterization, and Cultivation. In: Birbrair, A. (eds) Pericyte Biology - Novel Concepts. Advances in Experimental Medicine and Biology, vol 1109. Springer, Cham. https://doi.org/10.1007/978-3-030-02601-1_5

Download citation

Publish with us

Policies and ethics