Skip to main content

Pericyte Biology in Zebrafish

  • Chapter
  • First Online:
Pericyte Biology - Novel Concepts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1109))

Abstract

The zebrafish is an outstanding model for studying vascular biology in vivo. Pericytes and vascular smooth muscle cells can be imaged as they associate with vessels and provide stability and integrity to the vasculature. In zebrafish, pericytes associate with the cerebral and trunk vasculature on the second day of development, as assayed by pdgfrβ and notch3 markers. In the head, cerebral pericytes are neural crest derived, except for the pericytes of the hindbrain vasculature, which are mesoderm derived. Similar to the hindbrain, pericytes on the trunk vasculature are also mesoderm derived. Regardless of their location, pericyte development depends on a complex interaction between blood flow and signalling pathways, such as Notch, SONIC HEDGEHOG and BMP signalling, all of which positively regulate pericyte numbers.

Pericyte numbers rapidly increase as development proceeds in order to stabilize both the blood-brain barrier and the vasculature and hence, prevent haemorrhage. Consequently, compromised pericyte development results in compromised vascular integrity, which then evolves into detrimental pathologies. Some of these pathologies have been modelled in zebrafish by inducing mutations in the notch3, foxc1 and foxf2 genes. These zebrafish models provide insights into the mechanisms of disease as associated with pericyte biology. Going forward, these models may be key contributors in elucidating the role of vascular mural cells in regulating vessel diameter and hence, blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez Y et al (2007) Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Dev Biol 7:1–17. https://doi.org/10.1186/1471-213X-7-114

    Article  CAS  Google Scholar 

  2. Ando K et al (2016) Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 143(8):1328–1339. https://doi.org/10.1242/dev.132654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arciniegas E et al (2000) Intimal thickening involves transdifferentiation of embryonic endothelial cells. Anat Rec 258(1):47–57. https://doi.org/10.1002/(SICI)1097-0185(20000101)258:1<47::AID-AR6>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  4. Arnold CR et al (2015) Comparative analysis of genes regulated by Dzip1/iguana and hedgehog in Zebrafish. Dev Dyn 244(2):211–223. https://doi.org/10.1002/dvdy.24237

    Article  CAS  PubMed  Google Scholar 

  5. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. (1998) Neural crest cell contribution to the developing circulatory system: implications for vascularmorphology? Feb 9;82(2):221–31 PMID:9468193

    Google Scholar 

  6. Bower NI et al (2017) Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci 20(6):774–783. https://doi.org/10.1038/nn.4558

    Article  CAS  PubMed  Google Scholar 

  7. Buchner DA et al (2007) Pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proc Natl Acad Sci 104(35):13996–14001. https://doi.org/10.1073/pnas.0700947104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bussmann J, Wolfe SA, Siekmann AF (2011) Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 138(9):1717–1726. https://doi.org/10.1242/dev.059881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cavanaugh AM, Huang J, Chen J (2015) Two developmentally distinct populations of neural crest cells contribute to the zebra fish heart. Dev Biol Elsevier 404:103–112. https://doi.org/10.1016/j.ydbio.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chauhan G et al (2016) Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurol 15(7):695–707. www.thelancet.com/neurology. https://doi.org/10.1016/S1474-4422(16)00102-2

    Article  Google Scholar 

  11. Chen X et al (2017) Cilia control vascular mural cell recruitment in vertebrates. Cell Rep 18(4):1033–1047. https://doi.org/10.1016/j.celrep.2016.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Etchevers HC et al (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068. https://doi.org/10.7554/elife.10036.016

    Article  CAS  PubMed  Google Scholar 

  13. Fouquet B et al (1997) Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol 183(1):37–48. https://doi.org/10.1006/dbio.1996.8495

    Article  CAS  PubMed  Google Scholar 

  14. French CR et al (2014) Mutation of transcription factors FOXC1 and PITX2 causes cerebral small vessel disease. J Clin Investig 124(11):4877–4881. https://doi.org/10.1172/JCI75109DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaengel K et al (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638. https://doi.org/10.1161/ATVBAHA.107.161521

    Article  CAS  PubMed  Google Scholar 

  16. Galanternik MV et al (2017) A novel perivascular cell population in the zebrafish brain. elife. https://doi.org/10.7554/eLife.24369

  17. Goetz JG et al (2014) Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep 6(5):799–808. https://doi.org/10.1016/j.celrep.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  18. Goi M, Childs SJ (2016) Patterning mechanisms of the sub-intestinal venous plexus in zebrafish. Dev Biol Elsevier 409(1):114–128. https://doi.org/10.1016/j.ydbio.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  19. Harrison MRM et al (2015) Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev Cell. Elsevier Inc. 33(4):442–454. https://doi.org/10.1016/j.devcel.2015.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayashi H, Kume T (2008) Foxc transcription factors directly regulate DII4 and hey2 expression by interacting with the VEGF-notch signaling pathways in endothelial cells. PLoS One 3(6):1–9. https://doi.org/10.1371/journal.pone.0002401

    Article  CAS  Google Scholar 

  21. Hen G et al (2015) Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development 142(24):4266–4278. https://doi.org/10.1242/dev.129247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirschi KK, D’Amore P a (1996) Pericytes in the mircovasculature. Cardiovasc Res 32:687–698

    Article  CAS  PubMed  Google Scholar 

  23. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-B and heterotypic cell-cell interactions mediate the recruitment and differentiation of 10T1/2 cells to a smooth muscle cell fate. J Cell Biol 141(3):805–814. https://doi.org/10.1083/jcb.141.3.805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin S-W (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209. https://doi.org/10.1242/dev.02087

    Article  CAS  PubMed  Google Scholar 

  25. Joutel A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710. https://doi.org/10.1038/383707a0

    Article  CAS  PubMed  Google Scholar 

  26. Kallakuri S et al (2015) Endothelial cilia are essential for developmental vascular integrity in zebrafish. J Am Soc Nephrol 26(4):864–875. https://doi.org/10.1681/ASN.2013121314

    Article  CAS  PubMed  Google Scholar 

  27. Koenig AL et al (2016) Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Dev Biol. Elsevier 411(1):115–127. https://doi.org/10.1016/j.ydbio.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kohli V et al (2013) Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell. United States 25(2):196–206. https://doi.org/10.1016/j.devcel.2013.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kok FO et al (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. Elsevier Inc. 32(1):97–108. https://doi.org/10.1016/j.devcel.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  30. Lamont RE et al (2010) Hedgehog signaling via angiopoietin1 is required for developmental vascular stability. Mech Dev 127(3–4):159–168. https://doi.org/10.1016/j.mod.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  31. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. United States 248(2):307–318

    Article  CAS  PubMed  Google Scholar 

  32. Lei D et al (2017) bmp3 is required for integrity of blood brain barrier by promoting pericyte coverage in zebrafish embryos. Curr Mol Med 17(4):298–303. https://doi.org/10.2174/1566524017666171106114234

    Article  CAS  PubMed  Google Scholar 

  33. Leveen P, Betsholtz C, Westermark B (1993) Negative trans-acting mechanisms controlling expression of platelet- derived growth factor A and B MRNA in somatic cell hybrids. Exp Cell Res:283–289 Available at: http://www.ncbi.nlm.nih.gov/pubmed/8344381

  34. Liu J et al (2007) A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc Natl Acad Sci 104(35):13990–13995. https://doi.org/10.1073/pnas.0700825104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miano JM et al (2006) Ultrastructure of zebrafish dorsal aortic cells. Zebrafish 3(4):455–463. https://doi.org/10.1089/zeb.2006.3.455

    Article  PubMed  Google Scholar 

  36. Monet-Leprêtre M et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3ECD: a new pathomechanism in CADASIL. Brain 136(6):1830–1845. https://doi.org/10.1093/brain/awt092

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pitulescu ME, Adams RH (2014) Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adhes Migr 8(4):366–377. https://doi.org/10.4161/19336918.2014.970010

    Article  Google Scholar 

  38. Quillien A et al (2014) Distinct notch signaling outputs pattern the developing arterial system. Development 141(7):1544–1552. https://doi.org/10.1242/dev.099986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reischauer S et al (2016) Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature. Nature Publishing Group 535(7611):294–298. https://doi.org/10.1038/nature18614

    Article  CAS  PubMed  Google Scholar 

  40. Reyahi A et al (2015) Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood-brain barrier. Dev Cell 34(1):19–32. https://doi.org/10.1016/j.devcel.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  41. Santoro MM et al (2007) Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet 39(11):1397–1402. https://doi.org/10.1038/ng.2007.8

    Article  CAS  PubMed  Google Scholar 

  42. Santoro MM, Pesce G, Stainier DY (2009) Characterization of vascular mural cells during zebrafish development. Mech Dev 126(8–9):638–649. https://doi.org/10.1016/j.mod.2009.06.1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seo S et al (2006) The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 294(2):458–470. https://doi.org/10.1016/j.ydbio.2006.03.035

    Article  CAS  PubMed  Google Scholar 

  44. Stainier DY et al (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121(10):3141–3150

    CAS  PubMed  Google Scholar 

  45. Stainier DY et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. England 123:285–292

    CAS  PubMed  Google Scholar 

  46. Stratman AN et al (2017) Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta. Development 144(1):115–127. https://doi.org/10.1242/dev.143131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ulrich F et al (2016) Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 143(6):1055–1055. https://doi.org/10.1242/dev.136507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell Elsevier Inc. 16(2):180–195. https://doi.org/10.1016/j.devcel.2009.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vanhollebeke B et al (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. elife:1–25. https://doi.org/10.7554/eLife.06489

  50. Der Wang W et al (2011) Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev Biol. Elsevier Inc. 360(1):173–185. https://doi.org/10.1016/j.ydbio.2011.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y et al (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141(2):307–317. https://doi.org/10.1242/dev.096107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whitesell TR et al (2014) An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One United States 9(3):e90590. https://doi.org/10.1371/journal.pone.0090590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wiens KM et al (2010) Platelet-derived growth factor receptor β is critical for zebrafish intersegmental vessel formation. PLoS One 5(6). https://doi.org/10.1371/journal.pone.0011324

  54. Xu K, Cleaver O (2011) Tubulogenesis during blood vessel formation. Semin Cell Dev Biol 22(9):993–1004. https://doi.org/10.1016/j.semcdb.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Childs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahrami, N., Childs, S.J. (2018). Pericyte Biology in Zebrafish. In: Birbrair, A. (eds) Pericyte Biology - Novel Concepts. Advances in Experimental Medicine and Biology, vol 1109. Springer, Cham. https://doi.org/10.1007/978-3-030-02601-1_4

Download citation

Publish with us

Policies and ethics