Skip to main content

Pericytes in Tissue Engineering

  • Chapter
  • First Online:
Pericyte Biology - Novel Concepts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1109))

Abstract

Pericytes have crucial roles in blood-brain barrier function, blood vessel function/stability, angiogenesis, endothelial cell proliferation/differentiation, wound healing, and hematopoietic stem cells maintenance. They can be isolated from fetal and adult tissues and have multipotential differentiation capacity as mesenchymal stem cells (MSCs). All of these properties make pericytes as preferred cells in the field of tissue engineering. Current developments have shown that tissue-engineered three-dimensional (3D) systems including multiple cell layers (or types) and a supporting biological matrix represent the in vivo environment better than those monolayers on plastic dishes. Tissue-engineered models are also more ethical and cheaper systems than animal models. This chapter describes the role of pericytes in tissue engineering for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alakpa EV, Jayawarna V, Burgess KEV, West CC, Peault B, Ulijn RV, Dalby MJ (2017) Improving cartilage phenotype from differentiated pericytes in tunable peptide hydrogels. Sci Rep 7:6895

    Article  Google Scholar 

  2. Andreeva ER, Pugach IM, Gordon D, Orekhov AN (1998) Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30:127–135

    Article  CAS  Google Scholar 

  3. Attwell D, Mishra A, Hall CN, O'Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455

    Article  CAS  Google Scholar 

  4. Avolio E, Alvino VV, Ghorbel MT, Campagnolo P (2017) Perivascular cells and tissue engineering: current applications and untapped potential. Pharmacol Ther 171:83–92

    Article  CAS  Google Scholar 

  5. Avolio E, Rodriguez-Arabaolaza I, Spencer HL, Riu F, Mangialardi G, Slater SC, Rowlinson J, Alvino VV, Idowu OO, Soyombo S, Oikawa A, Swim MM, Kong CH, Cheng H, Jia H, Ghorbel MT, Hancox JC, Orchard CH, Angelini G, Emanueli C, Caputo M, Madeddu P (2015) Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J Am Heart Assoc 4:e002043

    Article  Google Scholar 

  6. Bhattacharya D, Rossi DJ, Bryder D, Weissman IL (2006) Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J Exp Med 203:73–85

    Article  CAS  Google Scholar 

  7. Bigas A, Robert-Moreno A, Espinosa L (2010) The notch pathway in the developing hematopoietic system. Int J Dev Biol 54:1175–1188

    Article  CAS  Google Scholar 

  8. Blocki A, Wang YT, Koch M, Peh P, Beyer S, Law P, Hui J, Raghunath M (2013) Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev 22:2347–2355

    Article  CAS  Google Scholar 

  9. Bodnar RJ, Satish L, Yates CC, Wells A (2016) Pericytes: a newly recognized player in wound healing. Wound Repair Regen 24:204–214

    Article  Google Scholar 

  10. Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Krankel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121:1735–1745

    Article  Google Scholar 

  11. Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35:1151–1159

    Article  Google Scholar 

  12. Carneiro TN, Novaes DS, Rabelo RB, Celebi B, Chevallier P, Mantovani D, Beppu MM, Vieira RS (2013) BSA and fibrinogen adsorption on chitosan/kappa-carrageenan polyelectrolyte complexes. Macromol Biosci 13:1072–1083

    Article  CAS  Google Scholar 

  13. Celebi B, Cloutier M, Balloni R, Mantovani D, Bandiera A (2012) Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation. Macromol Biosci 12:1546–1554

    Article  CAS  Google Scholar 

  14. Celebi B, Mantovani D, Pineault N (2011) Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells. Biomed Mater 6:055011

    Article  Google Scholar 

  15. Celebi B, Mantovani D, Pineault N (2011) Irradiated mesenchymal stem cells improve the ex vivo expansion of hematopoietic progenitors by partly mimicking the bone marrow endosteal environment. J Immunol Methods 370:93–103

    Article  CAS  Google Scholar 

  16. Celebi Saltik B, Gokcinar Yagci B (2017) Expansion of human umbilical cord blood hematopoietic progenitors with cord vein pericytes. Turk J Biol 41:49–U265

    Article  Google Scholar 

  17. Celebi Saltik B, Oteyaka MO (2016) Cardiac patch design: compatibility of nanofiber materials prepared by electrospinning method with stem cells. Turk J Biol 40:510–518

    Article  Google Scholar 

  18. Chen CW, Okada M, Proto JD, Gao XQ, Sekiya N, Beckman SA, Corselli M, Crisan M, Saparov A, Tobita K, Peault B, Huard J (2013) Human pericytes for ischemic heart repair. Stem Cells 31:305–316

    Article  CAS  Google Scholar 

  19. Chen WC, Baily JE, Corselli M, Diaz ME, Sun B, Xiang G, Gray GA, Huard J, Peault B (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33:557–573

    Article  CAS  Google Scholar 

  20. Chin CJ, Li SW, Corselli M, Casero D, Zhu YH, Bin He C, Hardy R, Peault B, Crooks GM (2018) Transcriptionally and functionally distinct mesenchymal subpopulations are generated from human pluripotent stem cells. Stem Cell Rep 10:436–446

    Article  CAS  Google Scholar 

  21. Chong MS, Chan J, Choolani M, Lee CN, Teoh SH (2009) Development of cell-selective films for layered co-culturing of vascular progenitor cells. Biomaterials 30:2241–2251

    Article  CAS  Google Scholar 

  22. Chung CG, James AW, Asatrian G, Chang L, Nguyen A, Le K, Bayani G, Lee R, Stoker D, Zhang XL, Ting K, Peault B, Soo C (2014) Human perivascular stem cell-based bone graft substitute induces rat spinal fusion. Stem Cells Transl Med 3:1231–1241

    Article  CAS  Google Scholar 

  23. Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, Evseenko D, Wang X, Montelatici E, Lazzari L, Crooks GM, Peault B (2013) Perivascular support of human hematopoietic stem/progenitor cells. Blood 121:2891–2901

    Article  CAS  Google Scholar 

  24. Corselli M, Crisan M, Murray IR, West CC, Scholes J, Codrea F, Khan N, Peault B (2013) Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A 83:714–720

    Article  Google Scholar 

  25. Crisan M, Corselli M, Chen CW, Peault B (2011) Multilineage stem cells in the adult A perivascular legacy? Organogenesis 7:101–104

    Article  Google Scholar 

  26. Crisan M, Corselli M, Chen WC, Peault B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16:2851–2860

    Article  CAS  Google Scholar 

  27. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  Google Scholar 

  28. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2000:1–19

    Article  Google Scholar 

  29. Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Methods Mol Biol 686:49–68

    Article  CAS  Google Scholar 

  30. Dumont N, Boyer L, Emond H, Celebi-Saltik B, Pasha R, Bazin R, Mantovani D, Roy DC, Pineault N (2014) Medium conditioned with mesenchymal stromal cell-derived osteoblasts improves the expansion and engraftment properties of cord blood progenitors. Exp Hematol 42:741–752 e1

    Article  CAS  Google Scholar 

  31. Ellison-Hughes GM, Madeddu P (2017) Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther 171:1–12

    Article  CAS  Google Scholar 

  32. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232

    Article  CAS  Google Scholar 

  33. Fuoco C, Sangalli E, Vono R, Testa S, Sacchetti B, Latronico MV, Bernardini S, Madeddu P, Cesareni G, Seliktar D, Rizzi R, Bearzi C, Cannata SM, Spinetti G, Gargioli C (2014) 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol 5:203

    Article  Google Scholar 

  34. Gokcinar-Yagci B, Ozyuncu O, Celebi-Saltik B (2016) Isolation, characterisation and comparative analysis of human umbilical cord vein perivascular cells and cord blood mesenchymal stem cells. Cell Tissue Bank 17:345–352

    Article  CAS  Google Scholar 

  35. Gokcinar-Yagci B, Uckan-Cetinkaya D, Celebi-Saltik B (2015) Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev 11:549–559

    Article  CAS  Google Scholar 

  36. Gokcinar-Yagci B, Yersal N, Korkusuz P, Celebi-Saltik B (2018) Generation of human umbilical cord vein CD146+ perivascular cell origined three-dimensional vascular construct. Microvasc Res 118:101–112

    Article  CAS  Google Scholar 

  37. He W, Nieponice A, Soletti L, Hong Y, Gharaibeh B, Crisan M, Usas A, Peault B, Huard J, Wagner WR, Vorp DA (2010) Pericyte-based human tissue engineered vascular grafts. Biomaterials 31:8235–8244

    Article  CAS  Google Scholar 

  38. Hindle P, Khan N, Biant L, Peault B (2017) The infrapatellar fat pad as a source of perivascular stem cells with increased chondrogenic potential for regenerative medicine. Stem Cells Transl Med 6:77–87

    Article  CAS  Google Scholar 

  39. Hoshiba T, Lu HX, Kawazoe N, Chen GP (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10:1717–1728

    Article  CAS  Google Scholar 

  40. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72

    Article  CAS  Google Scholar 

  41. Isakson M, de Blacam C, Whelan D, McArdle A, Clover AJ (2015) Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int 2015:831095

    Article  CAS  Google Scholar 

  42. James AW, Hindle P, Murray IR, West CC, Tawonsawatruk T, Shen J, Asatrian G, Zhang X, Nguyen V, Simpson AH, Ting K, Peault B, Soo C (2017) Pericytes for the treatment of orthopedic conditions. Pharmacol Ther 171:93–103

    Article  CAS  Google Scholar 

  43. James AW, Zara JN, Corselli M, Askarinam A, Zhou AM, Hourfar A, Nguyen A, Megerdichian S, Asatrian G, Pang S, Stoker D, Zhang X, Wu B, Ting K, Peault B, Soo C (2012) An abundant perivascular source of stem cells for bone tissue engineering. Stem Cells Transl Med 1:673–684

    Article  CAS  Google Scholar 

  44. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74:570–581

    Article  Google Scholar 

  45. Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui YX, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109:894–U191

    Article  CAS  Google Scholar 

  46. Koch AE, Kronfeldharrington LB, Szekanecz Z, Cho MM, Haines GK, Harlow LA, Strieter RM, Kunkel SL, Massa MC, Barr WG, Jimenez SA (1993) In-situ expression of cytokines and cellular adhesion molecules in the skin of patients with systemic-sclerosis – their role in early and late disease. Pathobiology 61:239–246

    Article  CAS  Google Scholar 

  47. McDonald AG, Yang K, Roberts HR, Monroe DM, Hoffman M (2008) Perivascular tissue factor is down-regulated following cutaneous wounding: implications for bleeding in hemophilia. Blood 111:2046–2048

    Article  CAS  Google Scholar 

  48. Mills SJ, Cowin AJ, Kaur P (2013) Pericytes, mesenchymal stem cells and the wound healing process. Cell 2:621–634

    Article  CAS  Google Scholar 

  49. Mravic M, Asatrian G, Soo C, Lugassy C, Barnhill RL, Dry SM, Peault B, James AW (2014) From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering. Int Orthop 38:1819–1824

    Article  Google Scholar 

  50. Murphy CM, O'Brien FJ, Little DG, Schindeler A (2013) Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 26:120–132

    Article  CAS  Google Scholar 

  51. Nees S, Weiss DR, Senftl A, Knott M, Forch S, Schnurr M, Weyrich P, Juchem G (2012) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302:H69–H84

    Article  CAS  Google Scholar 

  52. Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30:CE8–C12

    Article  CAS  Google Scholar 

  53. Pang YWY, Feng JF, Daltoe F, Fatscher R, Gentleman E, Gentleman MM, Sharpe PT (2016) Perivascular stem cells at the tip of mouse incisors regulate tissue regeneration. J Bone Miner Res 31:514–523

    Article  CAS  Google Scholar 

  54. Paquet-Fifield S, Schluter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, Pouliot N, Palatsides M, Ellis S, Brouard N, Zannettino A, Saunders N, Thompson N, Li J, Kaur P (2009) A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Investig 119:2795–2806

    CAS  PubMed  Google Scholar 

  55. Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139–1151

    Article  CAS  Google Scholar 

  56. Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM, Abraham DJ (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169:2254–2265

    Article  CAS  Google Scholar 

  57. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  Google Scholar 

  58. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14:41–51

    Article  CAS  Google Scholar 

  59. Tawonsawatruk T, West CC, Murray IR, Soo C, Peault B, Simpson AH (2016) Adipose derived pericytes rescue fractures from a failure of healing – non-union. Sci Rep 6:22779

    Article  CAS  Google Scholar 

  60. van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL (2013) Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13:3562–3568

    Article  Google Scholar 

  61. Wendel JS, Ye L, Tao R, Zhang J, Zhang J, Kamp TJ, Tranquillo RT (2015) Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cells Transl Med 4:1324–1332

    Article  CAS  Google Scholar 

  62. Wu YX, Jing XZ, Sun Y, Ye YP, Guo JC, Huang JM, Xiang W, Zhang JM, Guo FJ (2017) CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol Med Rep 16:8019–8028

    Article  CAS  Google Scholar 

  63. Xu JG, Gong T, Heng BC, Zhang CF (2017) A systematic review: differentiation of stem cells into functional pericytes. FASEB J 31:1775–1786

    Article  CAS  Google Scholar 

  64. Zamora DO, Natesan S, Becerra S, Wrice N, Chung E, Suggs LJ, Christy RJ (2013) Enhanced wound vascularization using a dsASCs seeded FPEG scaffold. Angiogenesis 16:745–757

    Article  CAS  Google Scholar 

  65. Zebardast N, Lickorish D, Davies JE (2010) Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing. Organogenesis 6:197–203

    Article  Google Scholar 

  66. Zhang S, Ba K, Wu L, Lee S, Peault B, Petrigliano FA, McAllister DR, Adams JS, Evseenko D, Lin Y (2015) Adventitial cells and perictyes support chondrogenesis through different mechanisms in 3-dimensional cultures with or without nanoscaffolds. J Biomed Nanotechnol 11:1799–1807

    Article  CAS  Google Scholar 

Download references

Conflict of Interest Statement

The author declares that she has no conflicts of interest concerning this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Informed Consent

This article does not contain any studies with human participants or animals performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Çelebi-Saltik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Çelebi-Saltik, B. (2018). Pericytes in Tissue Engineering. In: Birbrair, A. (eds) Pericyte Biology - Novel Concepts. Advances in Experimental Medicine and Biology, vol 1109. Springer, Cham. https://doi.org/10.1007/978-3-030-02601-1_10

Download citation

Publish with us

Policies and ethics