Skip to main content

A Few Notions of Stability and Bifurcation Theory

  • Chapter
  • First Online:
Hyperbolic and Kinetic Models for Self-organised Biological Aggregations

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2232))

  • 706 Accesses

Abstract

While numerical approaches are a very important step in investigating the patterns exhibited by the hyperbolic and kinetic models discussed in the previous chapters, they could be slow and might not offer a full understanding of the models’ dynamics due to the very large parameter space associated with some models. In contrast, stability theory could identify the parameter conditions under which a pattern could form, and eventually could become unstable giving rise to a different pattern. A deeper understanding of the formation of various spatial and spatio-temporal patterns is offered by bifurcation theory, which can distil the mathematical and biological mechanisms not only behind the formation of patterns, but also behind the transitions between different spatial and spatio-temporal patterns. In this Chapter, we review some basic notions of linear stability analysis for pattern formation in ordinary differential equations and partial differential equations, as well as basic notions of symmetry theory and bifurcation theory. We also present in more details the weakly nonlinear analysis approach for pattern investigation and classification. Finally, we discuss some drawbacks of bifurcation theory (e.g. centre manifold reduction) for infinite-dimensional dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Holmes, Bull. Math. Biol. 76(1), 157 (2014)

    Article  MathSciNet  Google Scholar 

  2. R. Hoyle, Pattern Formation. An Introduction to Methods (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  3. M. Golubitsky, I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space (Birkhäuser, Basel, 2002)

    Google Scholar 

  4. P. Chossat, R. Lauterbach, Methods in Equivariant Bifurcations and Dynamical Systems (World Scientific Publishing, Singapore, 2000)

    Book  MATH  Google Scholar 

  5. M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (Springer, London, 2010)

    MATH  Google Scholar 

  6. Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer, New York, 2000)

    Google Scholar 

  7. S. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 1994)

    Google Scholar 

  8. J.D. Murray, Mathematical Biology (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  9. L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 2000)

    MATH  Google Scholar 

  10. C. Chicone, Ordinary Differential Equations with Applications (Springer, New York, 1999)

    MATH  Google Scholar 

  11. R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)

    Article  MathSciNet  Google Scholar 

  12. T. Kolokolnikov, M. Ward, J. Wei, Discr. Contin. Dyn. Syst. Ser. B 19(5), 1373 (2014)

    Article  Google Scholar 

  13. T. Kolokolnikov, W. Sun, M. Ward, J. Wei, SIAM J. Appl. Dyn. Syst. 5(2), 313 (2006)

    Article  MathSciNet  Google Scholar 

  14. R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69(5), 1537 (2007)

    Article  MathSciNet  Google Scholar 

  15. F. Lutscher, J. Math. Biol. 45, 234 (2002)

    Article  MathSciNet  Google Scholar 

  16. H. Poincaré, Acta Math. 7, 259 (1885)

    Article  MathSciNet  Google Scholar 

  17. M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. Volume II (Springer, New York, 1988)

    Google Scholar 

  18. R. Seydel, Practical Bifurcation and Stability Analysis (Springer, New York, 2009)

    MATH  Google Scholar 

  19. J.C. Robinson, Infinite-Dimensional Dynamical Systems (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  20. L. Evans, Partial Differential Equations (American Mathematical Society, Providence, 1997)

    Google Scholar 

  21. H. Knobloch, B. Aulbach, in Equadiff5, Proceedings of the Fifth G. Teubner Verlagsgesellschaft, ed. by M. Greguš (Teubner, Leipzig, 1982), pp. 179–189

    Google Scholar 

  22. E. Altshuler, O. Ramos, Y.N. ez, J. Fernández, A. Batista-Leyva, C. Noda, Am. Nat. 166(6), 643 (2005)

    Google Scholar 

  23. G. Li, D. Huan, B. Roehner, Y. Xu, L. Zeng, Z. Di, Z. Han, PLoS One 9(12), e114517 (2014)

    Article  Google Scholar 

  24. Y.K. Chung, C.C. Lin, PLoS One 12(3), e0173642 (2017)

    Article  Google Scholar 

  25. Q. Ji, C. Xin, S. Tang, J. Huang, Phys. A Stat. Mech. Appl. 492, 941 (2018)

    Article  Google Scholar 

  26. N. Zabzina, A. Dussutour, R. Mann, D. Sumpter, S. Nicolis, PLoS Comput. Biol. 10(12), e1003960 (2014)

    Article  Google Scholar 

  27. P.L. Buono, R. Eftimie, Math. Models Methods Appl. Sci. 24(2), 327–357 (2014)

    Article  MathSciNet  Google Scholar 

  28. P.L. Buono, R. Eftimie, SIAM J. Appl. Dyn. Sys. 13(4), 1542 (2014)

    Article  Google Scholar 

  29. P.L. Buono, R. Eftimie, J. Math. Biol. 71(4), 847 (2014)

    Article  Google Scholar 

  30. P.L. Buono, R. Eftimie, Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol. 157 (Springer, Cham, 2016), pp. 29–59

    Google Scholar 

  31. J. Massot, R. Bacis, J. Math. Phys. 17, 1392 (1976)

    Article  Google Scholar 

  32. M. Makai, Transp. Theory Stat. Phys. 15(3), 249 (1984)

    Article  MathSciNet  Google Scholar 

  33. A. Bobylev, G. Caraffini, G. Spiga, J. Math. Phys. 37(6), 2787 (1996)

    Article  MathSciNet  Google Scholar 

  34. S. Takata, J. Stat. Phys. 136(4), 751 (2009)

    Article  MathSciNet  Google Scholar 

  35. Y. Grigoriev, S. Meleshko, N. Ibragimov, V. Kovalev, Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics (Springer, Dordrecht, 2010)

    Book  MATH  Google Scholar 

  36. O. Ilyin, Theor. Math. Phys. 186(2), 183 (2016)

    Article  Google Scholar 

  37. A.W.H. Mochaki, J.M. Manale, On Modified Symmetries for the Boltzmann Equation. Proceedings 2, 7 (2018)

    Article  Google Scholar 

  38. I. An, S. Chen, H.Y. Guo, Phys. A Stat. Mech. Appl. 128(3), 520 (1984)

    Article  Google Scholar 

  39. C. Sastri, K. Dunn, J. Math. Phys. 26, 3042 (1985)

    Article  MathSciNet  Google Scholar 

  40. P. Rudra, J. Phys. A Math. Gen. 23(10), 1663 (1990)

    Article  MathSciNet  Google Scholar 

  41. R. Kozlov, J. Eng. Math. 82(1), 39 (2013)

    Article  MathSciNet  Google Scholar 

  42. D. Métivier, Kinetic models, from Kuramoto to Vlasov: bifurcations and experimental analysis of a magneto-optical trap, Université Côte d’Azur (2017) (English)

    Google Scholar 

  43. C. Kubrusly, Bull. Belg. Math. Soc. Simon Stevin 15(1), 153 (2008)

    MathSciNet  Google Scholar 

  44. R. Eftimie, G. de Vries, M. Lewis, J. Math. Biol. 59, 37 (2009)

    Article  MathSciNet  Google Scholar 

  45. I. Kmit, L. Recke, J. Math. Anal. Appl. 335, 355 (2007)

    Article  MathSciNet  Google Scholar 

  46. A. Vanderbauwhede, Lyapunov–Schmidt Method for Dynamical Systems (Springer, New York, 2011), pp. 937–952

    Google Scholar 

  47. A. Bressan, D. Serre, M. Williams, K. Zumbrun, Hyperbolic Systems of Balance Laws (Springer, Berlin, 2007)

    Google Scholar 

  48. A. Mielke, J. Differ. Equ. 65, 68 (1986)

    Article  Google Scholar 

  49. A. Mielke, Math. Meth. Appl. Sci. 10, 51 (1988)

    Article  Google Scholar 

  50. A. Vanderbauwhede, in Dynamics in Infinite Dimensional Systems, ed. by S.N. Chow, J. Hale (Springer, Berlin , 1987), pp. 409–420

    Chapter  Google Scholar 

  51. A. Vanderbauwhede, G. Iooss, in Dynamics Reported, vol. 1, ed. by C. Jones, U. Kirchgraber, H. Walter (Springer, Berlin, 1992), pp. 125–163

    Chapter  Google Scholar 

  52. M. Lichtner, Proc. Am. Math. Soc. 136(6), 2091 (2008)

    Article  MathSciNet  Google Scholar 

  53. M. Renardy, Z. Angew. Math. Phys. 45(6), 854 (1994)

    Article  MathSciNet  Google Scholar 

  54. M. Renardy, Proc. R. Soc. Edin. Sect. A 122(3–4), 363 (1992)

    Article  Google Scholar 

  55. M. Lichtner, M. Radziunas, L. Recke, Math. Methods Appl. Sci. 30, 931 (2007)

    Article  MathSciNet  Google Scholar 

  56. W. Liu, M. Oh, in Infinite Dimensional Dynamical Systems, ed. by J. Mallet-Paret, J. Wu, H. Zhu (Springer, New York, 2013), pp. 169–183

    Chapter  Google Scholar 

  57. L. Arnold, P. Boxler, Diffusion Processes and Related Problems in Analysis, Volume II. Progress in Probability, vol. 27 (Birkhäuser, Boston, 1992), pp. 241–255

    Chapter  MATH  Google Scholar 

  58. D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations (World Scientific Publishing, Singapore, 2007)

    Book  MATH  Google Scholar 

  59. L. Arnold, Random Dynamical Systems (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  60. H. Crauel, P. Imkeller, M. Steinkamp, Stochastic Dynamics (Springer, New York, 1999), pp. 27–47

    MATH  Google Scholar 

  61. C. Kuehn, Physica D 240(12), 1020 (2011)

    Article  Google Scholar 

  62. K. Lika, T. Hallam, J. Math. Biol. 38, 346 (1999)

    Article  MathSciNet  Google Scholar 

  63. C.M. Topaz, A.L. Bertozzi, M.A. Lewis, Bull. Math. Bio. 68, 1601 (2006)

    Article  Google Scholar 

  64. K. Fellner, G. Raoul, Math. Comput. Model. 53, 1436 (2011)

    Article  Google Scholar 

  65. K. Fellner, G. Raoul, Math. Models Methods Appl. Sci. 20, 2267 (2010)

    Article  MathSciNet  Google Scholar 

  66. G. Raoul, Differ. Integr. Equ. 25(5/6), 417 (2012)

    MathSciNet  Google Scholar 

  67. D. Balagué, J. Carrillo, T. Laurent, G. Raoul, Phys. D Nonlinear Phenom. 260, 5 (2013)

    Article  Google Scholar 

  68. P.H. Chavanis, Phys. A Stat. Mech. Appl. 387, 5716 (2008)

    Article  MathSciNet  Google Scholar 

  69. F. Lutscher, A. Stevens, J. Nonlinear Sci. 12, 619 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftimie, R. (2018). A Few Notions of Stability and Bifurcation Theory. In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations. Lecture Notes in Mathematics(), vol 2232. Springer, Cham. https://doi.org/10.1007/978-3-030-02586-1_8

Download citation

Publish with us

Policies and ethics