Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2232))

  • 687 Accesses

Abstract

Local hyperbolic systems have been first introduced to describe the movement of a population formed of left-moving and right-moving individuals, in response to the local density of their neighbours. These types of models (also called discrete-speed kinetic models, since they incorporate individual-level information regarding the movement direction of cell/bacteria/individuals into macroscopic models for population dynamics) are applied to describe biological phenomena characterised by sharp turning behaviours (as observed, for example, in bacteria or cells). In this Chapter we discuss these hyperbolic systems in a step-by-step manner: we start with conservative systems with density-dependent turning rates, then we discuss systems with density-dependent speeds, and we conclude by discussing systems that include population dynamics (described by death and birth terms). We also present in more detail an analytical investigation of the stability of spatially-homogeneous steady states and spatially-heterogeneous travelling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Zienkiewicz, D. Barton, M.D. Bernardo, Eur. Phys. J. Spec. Top. 224, 3343 (2015)

    Article  Google Scholar 

  2. V. Mwaffo, S. Butail, M. di Bernardo, M. Porfiri, Zebrafish 12(3), 250 (2015)

    Article  Google Scholar 

  3. J. Killeen, H. Thurfjell, S. Ciuti, D. Paton, M. Musiani, M. Boyce, Mov. Ecol. 2(1), 15 (2014)

    Article  Google Scholar 

  4. T. Yang, J.S. Park, Y. Choi, W. Choi, T.W. Ko, K. Lee, PLoS ONE 6(6), e20255 (2011)

    Article  Google Scholar 

  5. C. Qian, C. Wong, S. Swarup, K.H. Chiam, Appl. Environ. Microbiol. 79(15), 4734 (2013)

    Article  Google Scholar 

  6. A. Patterson, A. Gopinath, M. Goulian, P. Arratia, Sci. Rep. 5, 15761 (2015)

    Article  Google Scholar 

  7. S. Yazdi, A. Ardekani, Biomicrofluidics 6, 044114 (2012)

    Article  Google Scholar 

  8. R. Stocker, Proc. Natl. Acad. Sci. USA 108(7), 2635 (2011)

    Article  Google Scholar 

  9. L. Xie, T. Altindal, S. Chattopadhyay, X.L. Wu, Proc. Natl. Acad. Sci. USA 105, 4209 (2011)

    Google Scholar 

  10. M. Segal, I. Soifer, H. Petzold, J. Howard, M. Elbaum, O. Reiner, Biol. Open 1, 1–12 (2012)

    Article  Google Scholar 

  11. E. Reese, L. Haimo, J. Cell Biol. 151, 155 (2000)

    Article  Google Scholar 

  12. M. Müller, S. Klumpp, R. Lipowsky, Proc. Natl. Acad. Sci. 105(12), 4609 (2008)

    Article  Google Scholar 

  13. M. Welte, Curr. Biol. 14, R525 (2004)

    Article  Google Scholar 

  14. A. John, A. Schadschneider, D. Chowdhury, K. Nishinari, J. Theor. Biol. 231(2), 279 (2004)

    Article  Google Scholar 

  15. W. Alhajyaseen, H. Nakamura, M. Asano, Proc. Soc. Behav. Sci. 16, 526 (2011)

    Article  Google Scholar 

  16. C. Feliciani, K. Nishinari, Phys. Rev. E 94, 032304 (2016)

    Article  Google Scholar 

  17. S. Goldstein, Quart. J. Mech. Appl. Math. 4, 129 (1951)

    Article  MathSciNet  Google Scholar 

  18. M. Kac, Rocky Mt. J. Math. 4, 497 (1974)

    Article  Google Scholar 

  19. E.E. Holmes, Am. Nat. 142, 779 (1993)

    Article  Google Scholar 

  20. K. Hadeler, Reaction transport systems in biological modelling, in Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer, Berlin, 1999), pp. 95–150

    Google Scholar 

  21. E. Codling, M. Plank, S. Benhamou, J. R. Soc. Interface 5(25), 813 (2008)

    Article  Google Scholar 

  22. D. Grünbaum, A. Okubo, in Frontiers in Mathematical Biology, ed. by S.A. Levin. Lecture Notes in Biomathematics, vol. 100 (Springer, Berlin, 1994), pp. 296–325

    Google Scholar 

  23. M.A. Lewis, Theor. Popul. Biol. 45, 277 (1994)

    Article  Google Scholar 

  24. T. Hillen, Can. Appl. Math. Q. 18(1), 1 (2010)

    MathSciNet  Google Scholar 

  25. H. Hasimoto, Proc. Jpn. Acad. Ser. A Math. Sci. 50, 623 (1974)

    Google Scholar 

  26. F. Lutscher, A. Stevens, J. Nonlinear Sci. 12, 619 (2002)

    Article  MathSciNet  Google Scholar 

  27. T. Hillen, A. Stevens, Nonlinear Anal.: Real World Appl. 1, 409 (2000)

    Article  MathSciNet  Google Scholar 

  28. P. Bressloff, J. Newby, Rev. Mod. Phys. 85(1), 135 (2013)

    Article  Google Scholar 

  29. F. Lutscher, J. Math. Biol. 45, 234 (2002)

    Article  MathSciNet  Google Scholar 

  30. L.A. Segel, SIAM J. Appl. Math. 32, 653 (1977)

    Article  Google Scholar 

  31. K. Kang, A. Scheel, A. Stevens, ArXiv (2018)

    Google Scholar 

  32. U. Börner, A. Deutsch, H. Reichenbach, M. Bär, Phys. Rev. Lett. 89, 078101 (2002)

    Article  Google Scholar 

  33. U. Börner, A. Deutsch, M. Bär, Phys. Biol. 3, 138 (2006)

    Article  Google Scholar 

  34. O. Igoshin, A. Mogilner, R. Welch, D. Kaiser, G. Oster, Proc. Natl. Acad. Sci. USA 98, 14913 (2001)

    Article  Google Scholar 

  35. O.A. Igoshin, R. Welch, D. Kaiser, G. Oster, Proc. Natl. Acad. Sci. USA 101, 4256 (2004)

    Article  Google Scholar 

  36. O.A. Igoshin, G. Oster, Math. Biosci. 188, 221 (2004)

    Article  MathSciNet  Google Scholar 

  37. R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)

    Article  MathSciNet  Google Scholar 

  38. T. Hillen, H. Levine, Z. Angew. Math. Phys. 54, 1 (2003)

    Google Scholar 

  39. Y.L. Chuang, M. D’Orsogna, D. Marthaler, A. Bertozzi, L. Chayes, Phys. D 232, 33 (2007)

    Article  MathSciNet  Google Scholar 

  40. A. Scheel, A. Stevens, J. Math. Biol. 75, 1047 (2017)

    Article  MathSciNet  Google Scholar 

  41. J.R. Hunter, Anim. Behav. 17, 507 (1969)

    Article  Google Scholar 

  42. J. Bick, G. Newell, Q. Appl. Math. 18, 191 (1960)

    Google Scholar 

  43. A. Chertock, A. Kurganov, A. Polizzi, I. Timofeyev, Math. Models Methods Appl. Sci. 81, 1947 (2003)

    Google Scholar 

  44. A. Kurganov, C.T. Lin, Commun. Comput. Phys. 2, 141 (2007)

    MathSciNet  Google Scholar 

  45. C. Appert-Rolland, P. Degond, S. Motch, Netw. Heterog. Media 6(3), 351 (2011)

    Article  MathSciNet  Google Scholar 

  46. A. Kurganov, E. Tadmor, J. Comput. Phys. 160, 240 (2000)

    Google Scholar 

  47. F. Lutscher, Eur. J. Appl. Math. 14, 291 (2003)

    Article  MathSciNet  Google Scholar 

  48. R. Eftimie, J. Bramson, D. Earn, J. Theor. Biol. 265, 467 (2010)

    Article  Google Scholar 

  49. E. Zemskov, K. Kassner, M. Tsyganov, M. Hauser, Eur. Phys. J. B. 72, 457 (2009)

    Article  Google Scholar 

  50. K. Hadeler, Math. Comput. Model. 31(4–5), 75 (2000)

    Article  Google Scholar 

  51. T. Hillen, J. Math. Anal. Appl. 210, 360 (1997)

    Article  MathSciNet  Google Scholar 

  52. T. Hillen, J. Math. Biol. 35, 49 (1996)

    Article  MathSciNet  Google Scholar 

  53. K. Hadeler, Can. Appl. Math. Q. 2, 27 (1994)

    Google Scholar 

  54. K. Hadeler, in Proceedings of the Thirteenth Dundee Conference, ed. by R. Jarvis (1996), pp. 18–32

    Google Scholar 

  55. T. Hillen, Nichtlineare hyperbolische systeme zur modellierung von ausbreitungsvorgängen und anwendung auf das turing modell. Ph.D. thesis, Universität Tübingen, 1995

    Google Scholar 

  56. D. Needham, J. Leach, IMA J. Appl. Math. 73, 158 (2008)

    Article  MathSciNet  Google Scholar 

  57. T. Hillen, Qualitative analysis of hyperbolic random walk systems. Technical report, SFB 382, Report No. 43, 1996

    Google Scholar 

  58. K. Hadeler, Nonlinear propagation in reaction transport systems, in Differential Equations with Applications to Biology. Fields Institute Communications (American Mathematical Society, Providence, 1998), pp. 251–257

    Google Scholar 

  59. K. Hadeler, J. Math. Sci. 149(6), 1658 (2008)

    Article  MathSciNet  Google Scholar 

  60. K. Hadeler, Reaction-telegraph equations with density-dependent coefficients, in Partial Differential Equations. Models in Physics and Biology. Mathematical Research, vol. 82 (Akademie-Verlag, Berlin, 1994), pp. 152–158

    Google Scholar 

  61. K. Hadeler, in Differential Equations and Applications to Biology and Industry. Proceedings of the Claremont International Conference, ed. by M. Martelli, K. Cooke, E. Cumberbatch, B. Tang, H. Thieme (1996), pp. 145–156

    Google Scholar 

  62. C. Xue, H. Hwang, K. Painter, R. Erban, Bull. Math. Biol. 73, 1695 (2011)

    Article  MathSciNet  Google Scholar 

  63. A. Kuznetsov, A.A. Avramenko, Proc. R. Soc. A 464, 2867 (2008)

    Article  Google Scholar 

  64. A. Kuznetsov, Proc. R. Soc. A 468, 3384 (2012)

    Article  Google Scholar 

  65. I. Kuznetsov, A. Kuznetsov, J. Biol. Phys. 40, 41 (2014)

    Article  Google Scholar 

  66. A. Friedman, G. Craciun, SIAM J. Math. Anal. 38(3), 741 (2006)

    Article  MathSciNet  Google Scholar 

  67. P. Jung, A. Brown, Phys. Biol. 6(4), 046002 (2009)

    Article  Google Scholar 

  68. P. Monsma, Y. Li, J. Fenn, P. Jung, A. Brown, J. Neurosci. 34(8), 2979 (2014)

    Article  Google Scholar 

  69. T. Ruijgrok, T. Wu, Phys. A 113, 401 (1982)

    Article  MathSciNet  Google Scholar 

  70. M. Garavello, B. Piccoli, Netw. Heterog. Media 4(1), 107 (2009)

    Article  MathSciNet  Google Scholar 

  71. G. Wong, S. Wong, Transp. Res. A 36, 827 (2002)

    Google Scholar 

  72. S. Benzoni-Gavage, R. Colombo, Eur. J. Appl. Math. 14, 587 (2003)

    Article  Google Scholar 

  73. J. Watmough, L. Edelstein-Keshet, J. Math. Biol. 33, 459 (1995)

    Article  MathSciNet  Google Scholar 

  74. E. Dynkin, Markov Processes. Die Grundlehren der Mathematischen Wissenschaften (In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete), vol. 121/122 (Springer, Berlin, 1965)

    Google Scholar 

  75. P. Bressloff, Stochastic Processes in Cell Biology (Springer, Cham, 2014)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftimie, R. (2018). Local Hyperbolic/Kinetic Systems in 1D. In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations. Lecture Notes in Mathematics(), vol 2232. Springer, Cham. https://doi.org/10.1007/978-3-030-02586-1_4

Download citation

Publish with us

Policies and ethics