Skip to main content

Towards Prediction of Turbulent Flows at High Reynolds Numbers Using High Performance Computing Data and Deep Learning

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2018)

Abstract

In this paper, deep learning (DL) methods are evaluated in the context of turbulent flows. Various generative adversarial networks (GANs) are discussed with respect to their suitability for understanding and modeling turbulence. Wasserstein GANs (WGANs) are then chosen to generate small-scale turbulence. Highly resolved direct numerical simulation (DNS) turbulent data is used for training the WGANs and the effect of network parameters, such as learning rate and loss function, is studied. Qualitatively good agreement between DNS input data and generated turbulent structures is shown. A quantitative statistical assessment of the predicted turbulent fields is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875v3 (2017)

  2. Boschung, J., Hennig, F., Gauding, M., Pitsch, H., Peters, N.: Generalised higher-order kolmogorov scales. J. Fluid Mech. 794, 233–251 (2016)

    Article  MathSciNet  Google Scholar 

  3. Frisch, U.: Turbulence - The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  4. Gauding, M., Danaila, L., Varea, E.: High-order structure functions for passive scalar fed by a mean gradient. Int. J. Heat Fluid Flow 67, 86–93 (2017)

    Article  Google Scholar 

  5. Gauding, M., Goebbert, J.H., Hasse, C., Peters, N.: Line segments in homogeneous scalar turbulence. Phys. Fluids 27(9), 095102 (2015)

    Article  Google Scholar 

  6. Gauding, M., Wick, A., Peters, N., Pitsch, H.: Generalized scale-by-scale energy budget equations for large-eddy simulations of scalar turbulence at various Schmidt numbers. J. Turbul. 15, 857–882 (2013)

    Article  Google Scholar 

  7. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv:1406.2661 (2014)

  8. Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre. J. Large-Scale Res. Facil. 1 (2015)

    Google Scholar 

  9. von Karman, T., Howarth, L.: On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 164(917), 192–215 (1938)

    Article  Google Scholar 

  10. Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)

    MathSciNet  MATH  Google Scholar 

  11. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941)

    MathSciNet  Google Scholar 

  12. Peters, N., Boschung, J., Gauding, M., Goebbert, J.H., Hill, R.J., Pitsch, H.: Higher-order dissipation in the theory of homogeneous isotropic turbulence. J. Fluid Mech. 803, 250–274 (2016)

    Article  MathSciNet  Google Scholar 

  13. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 (2015)

    Google Scholar 

  15. Sreenivasan, K.R.: The passive scalar spectrum and the Obukhov-Corrsin constant. Phys. Fluids 8, 189 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the computing time granted for the project JHPC55 by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JURECA at Forschungszentrum Jülich. Also, the computing time granted for the projects HFG00/HFG02 on the supercomputer JUQUEEN [8] at Forschungszentrum Jülich is acknowledged. MG acknowledges financial support by Labex EMC3, under the grant VAVIDEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gauding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bode, M., Gauding, M., Göbbert, J.H., Liao, B., Jitsev, J., Pitsch, H. (2018). Towards Prediction of Turbulent Flows at High Reynolds Numbers Using High Performance Computing Data and Deep Learning. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds) High Performance Computing. ISC High Performance 2018. Lecture Notes in Computer Science(), vol 11203. Springer, Cham. https://doi.org/10.1007/978-3-030-02465-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02465-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02464-2

  • Online ISBN: 978-3-030-02465-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics