Skip to main content

Enabling Explorative Visualization with Full Temporal Resolution via In Situ Calculation of Temporal Intervals

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2018)

Abstract

We explore a technique for saving full spatiotemporal simulation data for visualization and analysis. While such data is typically prohibitively large to store, we consider an in situ reduction approach that takes advantage of temporal coherence to make storage sizes tractable in some cases. Rather than limiting our data reduction to individual time slices or time windows, our algorithms act on individual locations and save data to disk as temporal intervals. Our results show that the efficacy of piecewise approximations varies based on the desired error bound guarantee and tumultuousness of the time-varying data. We ran our in situ algorithms for one simulation and experienced promising results compared to the traditional paradigm. We also compared the results to two data reduction operators: wavelets and SZ.

The U.S. government retains certain licensing rights. This is a U.S. government work and certain licensing rights apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical report LLNL-TR-490254

    Google Scholar 

  2. Baker, A.H., Xu, H., Hammerling, D.M., Li, S., Clyne, J.P.: Toward a multi-method approach: lossy data compression for climate simulation data. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp. 30–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2_3

    Chapter  Google Scholar 

  3. Baker, A.H., et al.: Evaluating lossy data compression on climate simulation data within a large ensemble. Geosci. Model Dev. 9(12), 4381–4403 (2016)

    Article  Google Scholar 

  4. Baker, A.H., et al.: A methodology for evaluating the impact of data compression on climate simulation data. In: Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing, HPDC 2014, pp. 203–214. ACM, New York (2014)

    Google Scholar 

  5. Bertram, M., Duchaineau, M.A., Hamann, B., Joy, K.I.: Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization. In: Proceedings of the Conference on Visualization 2000, pp. 389–396. IEEE Computer Society Press (2000)

    Google Scholar 

  6. Burtscher, M., Mukka, H., Yang, A., Hesaaraki, F.: Real-time synthesis of compression algorithms for scientific data. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016, pp. 264–275, November 2016

    Google Scholar 

  7. Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-precision floating-point data. IEEE Trans. Comput. 58(1), 18–31 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chang, C., et al.: Compressed ion temperature gradient turbulence in diverted tokamak edge. Phys. Plasmas (1994-present) 16(5), 056108 (2009)

    Article  Google Scholar 

  9. Chen, D., Chiang, Y.J., Memon, N., Wu, X.: Lossless geometry compression for steady-state and time-varying irregular grids. In: Santos, B.S., Ertl, T., Joy, K. (eds.) EUROVIS - Eurographics/IEEE VGTC Symposium on Visualization. The Eurographics Association (2006)

    Google Scholar 

  10. Clyne, J., Mininni, P., Norton, A., Rast, M.: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9(8), 301 (2007)

    Article  Google Scholar 

  11. Clyne, J., Rast, M.: A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In: Electronic Imaging 2005, pp. 284–294. International Society for Optics and Photonics (2005)

    Google Scholar 

  12. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In: Proceedings of the IPDPS. IEEE (2016)

    Google Scholar 

  13. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ visualization. In: 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pp. 59–65, November 2014

    Google Scholar 

  14. Fout, N., Ma, K.L.: An adaptive prediction-based approach to lossless compression of floating-point volume data. IEEE Trans. Vis. Comput. Graph. 18(12), 2295–2304 (2012)

    Article  Google Scholar 

  15. Gomez, L.A.B., Cappello, F.: Improving floating point compression through binary masks. In: 2013 IEEE International Conference on Big Data, pp. 326–331. IEEE (2013)

    Google Scholar 

  16. Guthe, S., Strasser, W.: Real-time decompression and visualization of animated volume data. In: Proceedings of IEEE Visualization (VIS 2001), pp. 349–572, October 2001

    Google Scholar 

  17. Hübbe, N., Kunkel, J.: Reducing the HPC-datastorage footprint with mafisc—multidimensional adaptive filtering improved scientific data compression. Comput. Sci. - Res. Dev. 28(2), 231–239 (2013)

    Article  Google Scholar 

  18. Ihm, I., Park, S.: Wavelet-based 3D compression scheme for interactive visualization of very large volume data. In: Computer Graphics Forum, vol. 18, pp. 3–15. Wiley Online Library (1999)

    Google Scholar 

  19. Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algorithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32820-6_83

    Chapter  Google Scholar 

  20. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 289–296 (2001)

    Google Scholar 

  21. Kim, T.Y., Shin, Y.G.: An efficient wavelet-based compression method for volume rendering. In: Proceedings of the Seventh Pacific Conference on Computer Graphics and Applications, pp. 147–156. IEEE (1999)

    Google Scholar 

  22. Lakshminarasimhan, S., et al.: Compressing the incompressible with ISABELA: in-situ reduction of spatio-temporal data. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 366–379. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-2_34

    Chapter  Google Scholar 

  23. Lakshminarasimhan, S., et al.: ISABELA for effective in situ compression of scientific data. Concurr. Comput.: Pract. Exp. 25(4), 524–540 (2013)

    Article  Google Scholar 

  24. Lee, D., Sim, A., Choi, J., Wu, K.: Novel data reduction based on statistical similarity. In: Proceedings of the 28th International Conference on Scientific and Statistical Database Management, p. 21. ACM (2016)

    Google Scholar 

  25. Lehmann, H., Jung, B.: In-situ multi-resolution and temporal data compression for visual exploration of large-scale scientific simulations. In: 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pp. 51–58, November 2014

    Google Scholar 

  26. Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of wavelet configurations on turbulent-flow data. In: 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), pp. 81–89 (2015)

    Google Scholar 

  27. Li, S., Larsen, M., Clyne, J., Childs, H.: Performance impacts of in situ wavelet compression on scientific simulations. In: Proceedings of the In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization Workshop, ISAV 2017. ACM, New York (2017)

    Google Scholar 

  28. Li, S., Marsaglia, N., Chen, V., Sewell, C., Clyne, J., Childs, H.: Achieving portable performance for wavelet compression using data parallel primitives. In: Telea, A., Bennett, J. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2017). https://doi.org/10.2312/pgv.20171095

  29. Li, S., Marsaglia, N., Garth, C., Woodring, J., Clyne, J., Childs, H.: Data reduction techniques for simulation, visualization and data analysis. Comput. Graph. Forum, March 2018. https://doi.org/10.1111/cgf.13336

    Article  Google Scholar 

  30. Li, S., Sane, S., Orf, L., Mininni, P., Clyne, J., Childs, H.: Spatiotemporal wavelet compression for visualization of scientific simulation data. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 216–227, September 2017

    Google Scholar 

  31. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 20(12), 2674–2683 (2014)

    Article  Google Scholar 

  32. Lindstrom, P.: Error distributions of lossy floating-point compressors. In: Joint Statistical Meetings, October 2017

    Google Scholar 

  33. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 12(5), 1245–1250 (2006)

    Article  Google Scholar 

  34. Ma, J., Murphy, D., O’Mathuna, C., Hayes, M., Provan, G.: Visualizing uncertainty in multi-resolution volumetric data using marching cubes. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 489–496. ACM (2012)

    Google Scholar 

  35. Mininni, P., Alexakis, A., Pouquet, A.: Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys. Rev. E 74(1), 016303 (2006)

    Article  Google Scholar 

  36. Olanda, R., Pérez, M., Orduña, J.M., Rueda, S.: Terrain data compression using wavelet-tiled pyramids for online 3D terrain visualization. Int. J. Geogr. Inf. Sci. 28(2), 407–425 (2014)

    Article  Google Scholar 

  37. Orf, L., Wilhelmson, R., Wicker, L.: Visualization of a simulated long-track EF5 tornado embedded within a supercell thunderstorm. Parallel Comput. 55, 28–34 (2016)

    Article  Google Scholar 

  38. Rodler, F.F.: Wavelet based 3D compression with fast random access for very large volume data. In: Seventh Pacific Conference on Computer Graphics and Applications, pp. 108–117. IEEE (1999)

    Google Scholar 

  39. Sakai, R., Sasaki, D., Obayashi, S., Nakahashi, K.: Wavelet-based data compression for flow simulation on block-structured Cartesian mesh. Int. J. Numer. Methods Fluids 73(5), 462–476 (2013)

    Article  Google Scholar 

  40. Schendel, E.R., et al.: ISOBAR preconditioner for effective and high-throughput lossless data compression. In: Proceedings - International Conference on Data Engineering, pp. 138–149 (2012)

    Google Scholar 

  41. Tao, D., Di, S., Chen, Z., Capello, F.: Significantly improving lossy compression for scientific data sets based on multidimensional prediction and error-controlled quantization. In: IEEE International Parallel and Distributed Processing Symposium (2017, to appear)

    Google Scholar 

  42. Treib, M., Burger, K., Reichl, F., Meneveau, C., Szalay, A., Westermann, R.: Turbulence visualization at the terascale on desktop PCs. IEEE Trans. Vis. Comput. Graph. 18(12), 2169–2177 (2012)

    Article  Google Scholar 

  43. Woodring, J., Mniszewski, S., Brislawn, C., DeMarle, D., Ahrens, J.: Revisiting wavelet compression for large-scale climate data using jpeg 2000 and ensuring data precision. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 31–38. IEEE (2011)

    Google Scholar 

  44. Yang, A., Mukka, H., Hesaaraki, F., Burtscher, M.: MPC: a massively parallel compression algorithm for scientific data. In: 2015 IEEE International Conference on Cluster Computing, pp. 381–389, September 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole Marsaglia or Hank Childs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marsaglia, N., Li, S., Childs, H. (2018). Enabling Explorative Visualization with Full Temporal Resolution via In Situ Calculation of Temporal Intervals. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds) High Performance Computing. ISC High Performance 2018. Lecture Notes in Computer Science(), vol 11203. Springer, Cham. https://doi.org/10.1007/978-3-030-02465-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02465-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02464-2

  • Online ISBN: 978-3-030-02465-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics