Skip to main content

Nanomaterials in the Development of Biosensor and Application in the Determination of Pollutants in Water

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Abstract

In the last years, nanotechnologies have contributed to the development of miniaturized biosensor-based devices with high-throughput analytical properties. Biosensors technology is taking advantage of the latest developments in materials science. Nanomaterials with sizes or features ranging from 1 to 100 nm in one or more dimensions are the core of an emerging technological revolution. They show unique properties not found in conventional materials, such as light absorption and dispersion, high surface area to volume ratio, superior electrical conductivity, magnetic property, and unique physicochemical features which have promoted the usage of nanomaterials as catalytic tools, optical or electroactive labels, and immobilization platforms of biomolecules to enhance the biosensing performance to gain higher sensitivity, stability, and selectivity. This chapter focuses on the application of biosensors with incorporated nanotechnology in the determination of pollutants in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014a) Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater Sci Eng C 35:8–14

    Article  CAS  Google Scholar 

  • Afkhami A, Soltani-Felehgari F, Madrakian T (2014b) Highly sensitive and selective determination of thiocyanate using gold nanoparticles surface decorated multi-walled carbon nanotubes modified carbon paste electrode. Sensor Actuat B Chem 196:467–474

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13

    Article  CAS  Google Scholar 

  • Arain MB, Ali I, Yilmaz E, Soylak M (2018) Nanomaterial’s based chromium speciation in environmental samples: a review. TrAC Trends Anal Chem 103:44–55

    Article  CAS  Google Scholar 

  • Arlett JL, Myers EB, Roukes ML (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6:203–215

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 3:452–468

    Article  CAS  Google Scholar 

  • Bapat G, Labade C, Chaudhari A, Zinjarde S (2016) Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interf Sci 237:1–14

    Article  CAS  Google Scholar 

  • Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 6:727–730

    Article  CAS  Google Scholar 

  • Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z (2016) Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosens Bioelectron 84:97–105

    Article  CAS  PubMed  Google Scholar 

  • Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL (2016) Applications of quantum dots in food science and biology. Trends Food Sci Technol 53:75–89

    Article  CAS  Google Scholar 

  • Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández Baldo MA, Raba J (2017) Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 464:64–71

    Article  CAS  PubMed  Google Scholar 

  • Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H (2015) A voltammetric sensor based on the glassy carbon electrode modified with multiwalled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sensor Actuat B Chem 216:384–393

    Article  CAS  Google Scholar 

  • Chen J, Zhu X (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim Acta Part A 137:456–462

    Article  CAS  Google Scholar 

  • Choi J, Oh B, Kim Y, Min JU (2007) Nanotechnology in biodevices. J Microb Biot 17:5–14

    CAS  Google Scholar 

  • Devasenathipathy R, Mani V, Chen S, Arulraj D, Vasantha V (2014) Highly stable and sensitive amperometric sensor for the determination of trace level hydrazine at cross linked pectin stabilized gold nanoparticles decorated graphene nanosheets. Electrochim Acta 135:260–269

    Article  CAS  Google Scholar 

  • Dong Y, Tian W, Ren S, Dai R, Chi Y, Chen G (2014) Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl Mater Interfaces 6:1646–1651

    Article  CAS  PubMed  Google Scholar 

  • Faraz M, Abbasi A, Naqvi FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sens Actuat B 269:195–202. https://doi.org/10.1016/j.snb.2018.04.110

    Article  CAS  Google Scholar 

  • Farré M, Sanchís J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends Anal Chem 30:517–527

    Article  CAS  Google Scholar 

  • Fernández Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79:681–686

    Article  PubMed  CAS  Google Scholar 

  • Gajanan K, Tijare SN (2018) Applications of nanomaterials. Mater Today Proceed 5:1093–1096

    Article  Google Scholar 

  • Han J, Li Y, Feng J, Li M, Wang P, Chen Z, Dong Y (2017) A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide. J Electroanal Chem 786:112–119

    Article  CAS  Google Scholar 

  • Hasan M, Ullah I, Zulfiqar H, Naeem K, Iqbal A, Gul H, Ashfaq M, Mahmood N (2018) Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective. Mater Today Chem 8:13–28

    Article  Google Scholar 

  • Hayat A, Rhouati A, Mishra RK, Alonso GA, Nasir M, Istamboulie G, Marty JL (2016) An electrochemical sensor based on TiO2/activated carbon nanocomposite modified screen printed electrode and its performance for phenolic compounds detection in water samples. Int J Environ Anal Chem 3:237–246

    Article  CAS  Google Scholar 

  • Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46

    Article  CAS  PubMed  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jarque S, Bittner M, Blaha L, Hilscherova K (2016) Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends Biotechnol 34:408–419

    Article  CAS  PubMed  Google Scholar 

  • Jiao S, Jin J, Wang L (2015) One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sensor Actuat B Chem 208:36–42

    Article  CAS  Google Scholar 

  • Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  • Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. Trends Anal Chem 47:27–36

    Article  CAS  Google Scholar 

  • Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P (2017) Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sens Actuat B Chem 246:854–863

    Article  CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  • Kurbanoglu S, Ozkan SA, Merkoçi A (2017) Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens Bioelectron 89:886–898

    Article  CAS  PubMed  Google Scholar 

  • Lai T, Cai W, Du H, Ye J (2014) Fe3O4 microspheres and graphene oxide encapsulated with chitosan: a new platform for sensitive determination of hydroquinone and catechol. Electroanalysis 26:216–222

    Article  CAS  Google Scholar 

  • Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  PubMed  Google Scholar 

  • Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350

    Article  CAS  Google Scholar 

  • Lee J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  • Lei W, Han Z, Si W, Hao Q, Zhang Y, Xia M, Wang F (2014) Sensitive and selective detection of imidacloprid by graphene-oxide-modified glassy carbon electrode. Chem Electro Chem 6:1063–1067

    Google Scholar 

  • Li J, Feng H, Li J, Jiang J, Feng Y, He L, Qian D (2015a) Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination. Electrochim Acta 176:827–835

    Article  CAS  Google Scholar 

  • Li X, Zhao C, Liu X (2015b) A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst Nanoeng 1:1–7

    Article  CAS  Google Scholar 

  • Li Y, Feng S, Zhong Y, Li Y, Li S (2015c) Simultaneous and highly sensitive determination of hydroquinone and catechol using carboxyl functionalized graphene self-assembled monolayers. Electroanalysis 27:2221–2229

    Article  CAS  Google Scholar 

  • Li Z, Fu Y, Fang W, Li Y (2015d) Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157:H7 with signal amplification using lectin. Sensors 15:19212–19224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian Y, Yuan M, Zhao H (2014) DNA wrapped metallic single-walled carbon nanotube sensor for Pb (II) detection. Fullerenes Nanotubes Carbon Nanostruct 22:510–518

    Article  CAS  Google Scholar 

  • Liang Y, Liu Y, Guo X, Ye P, Wen Y, Yang H (2014) Phytate functionalized multi-walled carbon nanotubes modified electrode for determining trace Cu(II) using differential normal pulse anodic stripping voltammetry. Sensor Actuat B Chem 201:107–113

    Article  CAS  Google Scholar 

  • Liu JM, Hu Y, Yang YK, Liu H, Fang GZ, Lu X, Wang S (2018) Emerging functional nanomaterials for the detection of food contaminants. Trends Food Sci Technol 71:94–106

    Article  CAS  Google Scholar 

  • Luo D, Wu L, Zhi J (2009) Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 3:2121–2128

    Article  CAS  PubMed  Google Scholar 

  • Lv M, Liu Y, Geng J, Kou X, Xin Z, Yang D (2018) Engineering nanomaterials-based biosensors for food safety detection. Biosens Bioelectron 106:122–128

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the solegel process. Acc Chem Res 40:810–818

    Article  CAS  PubMed  Google Scholar 

  • Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23

    Article  CAS  Google Scholar 

  • Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  PubMed  Google Scholar 

  • Martinez NA, Pereira SV, Bertolino FA, Schneider R, Messina GA, Raba J (2012) Electrochemical detection of a powerful estrogenic endocrine disruptor: Ethinylestradiol in water samples through bioseparation procedure. Anal Chim Acta 723:27–32

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumar J, Melo JS (2017) An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens Bioelectron 87:332–338

    Article  CAS  PubMed  Google Scholar 

  • Netto C, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 86:71–92

    Article  CAS  Google Scholar 

  • Niu P, Fernández-Sánchez C, Gich M, Navarro-Hernández C, Fanjul-Bolado P, Roig A (2016) Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim Acta 2:617–623

    Article  CAS  Google Scholar 

  • Noyrod P, Chailapakul O, Wonsawat W, Chuanuwatanakul S (2014) The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor. J Electroanal Chem 719:54–59

    Article  CAS  Google Scholar 

  • Piguillem S, Ortega FG, Raba J, Messina GA, Fernández Baldo MA (2018) Development of a nanostructured electrochemical immunosensor applied to the early detection of invasive aspergillosis. Microchem J 139:394–400

    Article  CAS  Google Scholar 

  • Pistone A, Piperno A, Iannazzo D, Donato N, Latino M, Spadaro D, Neri G (2013) Fe3O4- MWCNT-PhCOOH composites for ammonia resistive sensors. Sensor Actuat B Chem 186:333–342

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  • Rahemi V, Vandamme J, Garrido J, Borges F, Brett C, Garrido E (2012) Enhanced host-guest electrochemical recognition of herbicide MCPA using a beta-cyclodextrin carbon nanotube sensor. Talanta 99:288–293

    Article  CAS  PubMed  Google Scholar 

  • Ramnani P, Saucedo N, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98

    Article  CAS  PubMed  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  CAS  PubMed  Google Scholar 

  • Regiart M, Escudero LA, Aranda P, Martinez NA, Bertolino FA, Raba J (2015) Copper nanoparticles applied to the preconcentration and electrochemical determination of β-adrenergic agonist: an efficient tool for the control of meat production. Talanta 135:138–144

    Article  CAS  PubMed  Google Scholar 

  • Regiart M, Magallanes JL, Barrera D, Villarroel-Rocha J, Sapag K, Raba J, Bertolino FA (2016) An ordered mesoporous carbon modified electrochemical sensor for solid-phase microextraction and determination of triclosan in environmental samples. Sensor Actuat B Chem 232:765–772

    Article  CAS  Google Scholar 

  • Regiart M, Rinaldi-Tosi M, Aranda P, Bertolino FA, Villarroel-Rocha J, Sapag K, Messina GA, Raba J, Fernández B (2017) Development of a nanostructured immunosensor for early and in situ detection of Xanthomonas arboricola in agricultural food production. Talanta 175:535–541

    Article  CAS  PubMed  Google Scholar 

  • Rocha TAP (2014) Sensors and biosensors based on magnetic nanoparticles. Trends Anal Chem 62:28–36

    Article  CAS  Google Scholar 

  • Sabela MI, Mpanza T, Kanchi S, Sharma D, Bisetty K (2016) Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosens Bioelectron 83:45–53

    Article  CAS  PubMed  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 5:2739–2779

    Article  CAS  Google Scholar 

  • Scala-Benuzzi ML, Raba J, Soler I, Schneider RJ, Messina GA (2018a) Novel electrochemical paper-based immunocapture assay for the quantitative determination of ethinylestradiol in water samples. Anal Chem 90:4104–4111

    Article  CAS  PubMed  Google Scholar 

  • Scala-Benuzzi BM, Takara E, Alderete M, Soler IG, Schneider R, Raba J, Messina GA (2018b) Ethinylestradiol quantification in drinking water sources using a fluorescent paper-based immunosensor. Microchem J 141:287–293. https://doi.org/10.1016/j.microc.2018.05.038

    Article  CAS  Google Scholar 

  • Sharma S, Zapatero RJ, Estrela P, O’Kennedy R (2015) Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5:577–601

    Article  PubMed  PubMed Central  Google Scholar 

  • Shervedani R, Amini A, Sadeghi N (2016) Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: characterization and electrocatalytic applications. Biosens Bioelectron 77:478–485

    Article  CAS  PubMed  Google Scholar 

  • Si W, Lei W, Han Z, Hao Q, Zhang Y, Xia M (2014) Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sensor Actuat B Chem 199:154–160

    Article  CAS  Google Scholar 

  • Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74:562–574

    Article  CAS  PubMed  Google Scholar 

  • Sudha V, Kumar A, Thangamuthu R (2018) Simultaneous electrochemical sensing of sulphite and nitrite on acid functionalized multi-walled carbon nanotubes modified electrodes. J Alloys Compd 749:990–999

    Article  CAS  Google Scholar 

  • Sun Z, Wang W, Wen H, Gan C, Lei H, Liu Y (2015) Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta 899:91–99

    Article  CAS  PubMed  Google Scholar 

  • Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nano Today 1:28–37

    Article  Google Scholar 

  • Tehrani RMA, Ghadimi H, Ghani SA (2013) Electrochemical studies of two diphenols isomers at graphene nanosheet–poly(4-vinyl pyridine) composite modified electrode. Sensor Actuat B Chem 177:612–619

    Article  CAS  Google Scholar 

  • Tîlmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:1–21

    Article  CAS  Google Scholar 

  • Tovide O, Jahed N, Sunday C, Pokpas K, Ajayi R, Makelane H, Molapo K, John S, Baker P, Iwuoha E (2014) Electro-oxidation of anthracene on polyanilinographene composite electrode. Sensor Actuat B Chem 205:184–192

    Article  CAS  Google Scholar 

  • Turner A, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford, New York, p 770

    Google Scholar 

  • Vilian ATE, Chen SM, Chen YH, Ali MA, Al-Hemaid FMA (2014) An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. J Colloid Interface Sci 423:33–40

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 8:1–3

    Google Scholar 

  • Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao J, Wang X, Peng Q, Li YD (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057

    Article  CAS  Google Scholar 

  • Wang M, Abbineni G, Clevenger A, Mao CB, Xu SK (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med 7:710–729

    Article  CAS  Google Scholar 

  • Wang X, Li H, Wu M, Ge SL, Zhu Y, Wang QJ, He PG, Fang YZ (2013) Simultaneous electrochemical determination of sulphite and nitrite by a gold nanoparticle/graphene-chitosan modified electrode. Chin J Anal Chem 41:1232–1237

    Article  Google Scholar 

  • Wang S, Wang S, Guo Z (2014a) Electrochemiluminescence sensor for selective preconcentration and sensitive detection of napropamide using water-soluble sulfonated graphene. Electroanalysis 26:849–855

    Article  CAS  Google Scholar 

  • Wang Z, Wang H, Zhang Z, Yang X, Liu G (2014b) Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode. Electrochim Acta 120:140–146

    Article  CAS  Google Scholar 

  • Wang N, Lin M, Dai H, Ma H (2016a) Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosens Bioelectron 79:320–326

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhu W, Qiu Y, Yi X, Von dem BA, Kane A, Gao H, Koski K, Hurt R (2016b) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45:1750–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Meng F, Li H, Wang L, Liu J, Huang X (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041

    Article  CAS  Google Scholar 

  • Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L (2014) Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149:237–244

    Article  CAS  Google Scholar 

  • Wolfrum B, Katelhon E, Yakushenko A, Krause KJ, Adly N, Huske M, Rinklin P (2016) Nanoscale electrochemical sensor arrays: redox cycling amplification in dual-electrode systems. Acc Chem Res 49:2031–2040

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Lei W, Han Z, Zhang Y, Xia M, Hao Q (2015) A novel non-enzyme amperometric platform based on poly(3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim. Sensor Actuat B Chem 206:495–501

    Article  CAS  Google Scholar 

  • Wu Q, Hou Y, Zhang M, Hou X, Xu L, Wang N, Wang J, Huang W (2016) Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal Methods 8:1806–1812

    Article  CAS  Google Scholar 

  • Xu T, Zhang L, Yang J, Li N, Yang L, Jiang X (2013) Development of electrochemical method for the determination of olaquindox using multi-walled carbon nanotubes modified glassy carbon electrode. Talanta 109:185–190

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Xiao J, Liu B, Griveau S, Bedioui F (2015) Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 66:438–444

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Guan H, Yu J, Chi D (2013) Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pestic Biochem Physiol 105:197–202

    Article  CAS  Google Scholar 

  • Yang C, Denno ME, Pyakurel P, Venton BJ (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta 887:17–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Dou B, Yuan R, Xiang Y (2016) Proximity binding and metal ion-dependent DNAzyme cyclic amplification-integrated aptasensor for label-free and sensitive electrochemical detection of thrombin. Anal Chem 88:8218–8223

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem 781:147–154

    Article  CAS  Google Scholar 

  • Zhai H, Liang Z, Chen Z, Wang H, Liu Z, Su Z, Zhou Q (2015) Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta 171:105–113

    Article  CAS  Google Scholar 

  • Zhang Y, Wei Q (2016) The role of nanomaterials in electroanalytical biosensors: A mini review. J Electroanal Chem 781:401–409

    Article  CAS  Google Scholar 

  • Zhang JJ, Cheng FF, Li JJ, Zhu JJ, Lu Y (2016) Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. Nano Today 11:309–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support from Universidad Nacional de San Luis (PROICO-1512-22/Q232), Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-2246, PICT-2015-1575, PICT-2014-1184, PICT-2014-0375 and PICT-2013-3092) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP- 11220150100004CO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín A. Fernández-Baldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Messina, G.A. et al. (2019). Nanomaterials in the Development of Biosensor and Application in the Determination of Pollutants in Water. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_9

Download citation

Publish with us

Policies and ethics