Skip to main content

Nanotechnology Explored for Water Purification

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 922 Accesses

Abstract

Demand of the fresh water is increasing exponentially for drinking as well as for the industrial use. The main reasons behind this are population growth in worldwide, climate change, and industrial revolution. Hence there is a real demand of novel and innovative water purification technology for drinking water supply as well as to fulfil the industry requirement. Scientists and the researchers of the concerned field are giving their effort to develop water purification technology that would be sustainable, robust, energy-efficient and cost-effective. They have developed nanotechnology-based water purification using nano-silica-silver composite material based on nonwovens. In addition, they are also using this composite membrane of nonwovens and nanofibre for the pre-filtration as antifouling, antimicrobial and as a dye adsorptive material. Apart from the filtration, most of the industries (especially chemical and textile industries) liberated toxic water as effluent which is very much harmful for the living beings as well as for ecosystems.

Effluent water has lost its physical, chemical and biological properties due to mixing with some other contaminants like dyes, heavy metals, pathogens, other inorganic and organic materials, etc. Nanomaterials like metal oxide, metal nanoparticles, zeolite, etc. have already been explored effectively in the field of waste water purification due to its lower size, high surface area and size-dependent properties. Desalination of water is an emerging field in the water purification. Different nanostructured materials like nanoporous single layer graphene, etc. have been used by the researchers for the conversion of the seawater to the fresh water. Portable water is also very much useful as a carrying material in the boat, plane, and the other disaster areas. Nano tech water bottle (nanoscale holes present in the bottle filter) and nanostructured disinfectant can solve the problem in this regard. Nanosized membrane (10–20 nm) which is 3000 times finer than the human hair can efficiently filter and purify the water. Nanotechnology is also very much useful in the field of intelligent irrigation sector (water availability, water delivery, water flow monitoring, etc.) of the agriculture, which requires normally more than 70% of the fresh water. Because of the increased surface area, high reactivity, absorption power and the high strength by weight ratio of the nanomaterials it can create metal-free catalysts for water purification and the nanocomposite can easily be useful for making stronger, lighter pipes used in the agriculture field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cohen TD, Grossman JC (2012) Water desalination across nanoporous graphenes. Nano Lett 12:3602–3608

    Article  Google Scholar 

  • Elma M, Wang DK, Yacou C, Motuzas J, Diniz JC (2015) Interlayer free: nickel doped silica membranes for desalination. Desalination 365:308–315

    Article  CAS  Google Scholar 

  • Fathizadeh M, Aroujalian A, Raisi A (2011) Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J Membr Sci 375:88–95

    Article  CAS  Google Scholar 

  • Fathizadeh M, Xu WL, Zhou F, Yoon Y, Yu M (2017) Graphene oxide: a novel 2-dimensional material in membrane separation for water purification. Adv Mater Interfaces 4:1600918. https://doi.org/10.1002/admi.201600918

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Schulz AS (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  Google Scholar 

  • Hassan SS, Awwad NS, Aboterika AH (2009) Removal of synthetic reactive dyes from the textile waste water by Sorels cement. J Hazard Mater 162:994–999

    Article  CAS  Google Scholar 

  • Hongwei B, Zhaoyang L, Darren DS (2012) Hierarchical ZnO nanostructured membrane for multifunctional environmental applications. Colloid Surf A Physicochem Eng Aspect 410:11–17

    Article  Google Scholar 

  • Hyeok C, Souhail R, Al-Abed S, Dionysios D, Dionysiou S (2009) Nanostructured titanium oxide film and membrane-based photocatalysis for water treatment. Nanotech Appl Clean Water 34:39–46

    Google Scholar 

  • Jian X, Leonidas B, Dibakar B (2009) Synthesis of nanostructured bimetallic particles in poly ligand functionalized membranes for remediation applications. Nanotech Appl Clean Water 67:311–335

    Google Scholar 

  • Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high performance functional textiles. Text Prog 43:155–233

    Article  Google Scholar 

  • Karim MR, Rhodes ER, Brinkman N, Wymer L, Fout GS (2009) New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microbiol 75:2393–2399

    Article  CAS  Google Scholar 

  • Khalil A, Gondal MA, Dastageer MA (2009) Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catal Commun 11:214–219

    Article  Google Scholar 

  • Khalil A, Gondal MA, Dastageer MA (2011) Augmented photocatalytic activity of palladium incorporated ZnO nanoparticles in the disinfection of Escherichia coli microorganism from water. Appl Catal A Gen 402:162–167

    Article  CAS  Google Scholar 

  • Kim ES, Deng B (2011) Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J Memb Sci 375:46–54

    Article  CAS  Google Scholar 

  • Lee KP, Arnot TC, Mattia D (2011) A review of the reverse osmosis membrane materials for desalination. J Memb Sci 1:370–379

    Google Scholar 

  • Lin XC, Ding LP, Smart S, Diniz JC (2012) Cobalt oxide silica membranes for desalination. J Colloid Interface Sci 368:70–76

    Article  CAS  Google Scholar 

  • Marcells A, Omole F, Owino IK, Omowunmi A, Sadik N (2009) Nanostructured materials for improving water quality: potentials and risks. Nanotech Appl Clean Water 45:233–247

    Google Scholar 

  • Mejía ML, Zapata J, Cuesta DP, Ortiz IC, Botero LE, Galeano BJ, Escobar NJ, Hoyos LM (2017) Properties of antibacterial nano textile for use in hospital environments. Rev Ing Biomed 11:13–19. https://doi.org/10.24050/19099762.n22.2017.1178

    Article  Google Scholar 

  • Nednoor P, Gavalas VG, Chopra N, Hinds BJ, Bachas LG (2007) Carbon nanotube made biomimetic membranes: mimicking protein channels regulated by phosphorylation. J Mater Chem 17:1755–1765

    Article  CAS  Google Scholar 

  • Patra JK, Gouda S (2013) Application of nanotechnology in textile engineering: an overview. J Eng Technol Res 5:104–111

    Article  Google Scholar 

  • Prachi GP, Madathil D, Nair ANB (2015) Nanotechnology in waste water treatment: a review. Int J ChemTech Res 5:2303–2308

    Google Scholar 

  • Qian L, Hinestroza JP (2004) Application of nanotechnologyy for high performance textiles. J Text Apparel Technol Manage 4:1–7

    Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Schoen AP, Hu L, Kim HS, Heilshorn SC, Cui Y (2010) High speed water sterilization using one-dimensional nanostructures. Nano Lett 10:3628–3632

    Article  CAS  Google Scholar 

  • Seshama M, Khatri H, Suther M, Basak S, Ali SW (2017) Bulk Vs nano ZnO: influence of fire retardant behaviour on sisal fibre yarn. Carbohydr Polym 175:256–262

    Google Scholar 

  • Sharma V, Sharma A (2012) Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes. Int J Enhanced Res Sci Technol Eng 1:121–128

    Google Scholar 

  • Sint K, Wang B, Kral PJ (2008) Selective ion passage through functionalised graphene nanopores. J Am Chem Soc 130:16448–16449

    Article  CAS  Google Scholar 

  • Wegmann M, Michen B, Graule T (2008) Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc 28:1603–1612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laha, A., Biswas, D., Basak, S. (2019). Nanotechnology Explored for Water Purification. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_8

Download citation

Publish with us

Policies and ethics