Skip to main content

Water Pollution Remediation Techniques with Special Focus on Adsorption

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Water is essential for the survival of all living organism. According to WHO and UNICEF report, nearly 900 million people in the world have inadequate access to safe and improved water sources. Therefore, purification of water is essential to make the water suitable for human consumption. Adsorption technology has received extensive application in water purification because of its low-cost, operational simplicity and workability in broad concentration range. In the recent decade, development of advanced materials like carbon nanomaterials, nanocomposites and nanomagnetics as adsorbents has led to the rapid growth of research interests in this field.

This chapter starts with the global problem of safe drinking water, its impact on human beings and various techniques available for drinking water treatment. It further focuses on the process of adsorption at solid-liquid interface, the various adsorbents used for purification of water, their characteristic properties, suitability of different adsorbents for water purification and their relative advantages and disadvantages. The salient features of adsorption methodologies for drinking water purification in household and community level treatment systems are also discussed under this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50:13589–13613

    Article  CAS  Google Scholar 

  • Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper (II) from industrial wastes. Water Res 32:3085–3091

    Article  CAS  Google Scholar 

  • Albanis TA, Hela DG, Sakellarides TM, Danis TG (2000) Removal of dyes from aqueous solutions by adsorption on mixtures of fly ash and soil in batch and column techniques. Global Nest J 2:237–244

    Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behaviour of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  PubMed  Google Scholar 

  • Ali I, Peng C, Naz I, Khan ZM, Sultan M, Islam T, Abbasi IA (2017) Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Adv 7:40158–40178

    Article  CAS  Google Scholar 

  • Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Article  CAS  Google Scholar 

  • Altundogan HS, Altundogan S, Tumen F, Bildik M (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag 20(8):761–767

    Article  CAS  Google Scholar 

  • Altundogan HS, Altundogan S, Tumen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag 22(3):357–363

    Article  CAS  PubMed  Google Scholar 

  • Amin MN, Kaneco S, Kitagawa T, Begum A, Katsumata H, Suzuki T, Ohta K (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng Chem Res 45:8105–8110

    Article  CAS  Google Scholar 

  • Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ, Hoehn E, Yang H, Johnson CA (2008a) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675

    Article  CAS  PubMed  Google Scholar 

  • Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Moller KN, Sarr M, Johnson CA (2008b) Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol 42:3662–3668

    Article  CAS  PubMed  Google Scholar 

  • Anastopoulos I, Bhatnagar A, Lime EC (2016) Adsorption of rare earth metals: a review of recent literature. Adsorption of rare earth metals: a review of recent literature. J Mol Liquid 221:954–962

    Article  CAS  Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: A review on the status and stress effects. Environ. Sci. Technol. 36:433–487.

    Article  CAS  Google Scholar 

  • Benjamin MM, Leckie JO (1981) Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interf Sci 79:209–221

    Article  CAS  Google Scholar 

  • Bergaya F, Theng BKG, Lagaly G (2006) Development in clay science 1, Handboook of clay science. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpaa M (2011) Fluoride removal from water by adsorption: a review. Chem Eng J 171:811–840

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpaa M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review. Chem Eng J 157:277–296

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpaa M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168:493–504

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpaa M (2017) Removal of natural organic matter (NOM) and its constituents from water by adsorption: a review. Chemosphere 166:497–510

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Bhattacharyya G (2003) Removal of lead from contaminated water bodies using sea nodule as an adsorbent. Water Res 37:3954–3966

    Article  CAS  PubMed  Google Scholar 

  • Calace N, Di Muro A, Nardi E, Petronio BM, Pietroletti M (2002) Adsorption isotherms for describing heavy-metal retention in paper mill sludges. Ind Eng Chem Res 41:5491–5497

    Article  CAS  Google Scholar 

  • Chakravarty S, Dureja V, Bhattacharyya G, Maity S, Bhattacharjee S (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res 36:625–632

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulphate. J Hazard Mater 166:508–513

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Yadava KP, Pathak KC, Singh VN (1990) Defluoridation of water by adsorption on fly ash. Water Air Soil Pollut 49:51–61

    Article  CAS  Google Scholar 

  • Chauhan VS, Dwivedi PK, Iyengar L (2007) Investigations on activated alumina based domestic defluoridation units. J Hazard Mater B139:103–107

    Article  CAS  Google Scholar 

  • Chen X, Lam KF, Zhang Q, Pan B, Arruebo M, Yeung KL (2009) Synthesis of highly selective magnetic mesoporous adsorbent. J Phys Chem C 113:9804–9813

    Article  CAS  Google Scholar 

  • Cheremisinoff PN, Angelo CM (1980) Carbon adsorption applications, carbon adsorption handbook. Ann Arbor Science Publishers, Inc, Ann Arbor, pp 1–54

    Google Scholar 

  • Choi WW, Chen Y (1979) The removal of fluoride by adsorption. JAWWA 71:562–567

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) Iron oxides, 2nd edn. Wiley-VCH Publication, Germany

    Book  Google Scholar 

  • Craig L, Stillings LL, Decker DL (2017) Assessing changes in the physico-chemical properties and fluoride adsorption capacity of activated alumina under varied conditions. Appl Geochem 76:112–123

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon: a critical review. Chemosphere 58:1049–1070

    Article  CAS  PubMed  Google Scholar 

  • Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plants. Mater Lett 57:1723–1731

    Article  CAS  Google Scholar 

  • Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface. J Colloid Interf Sci 67:90–107

    Article  CAS  Google Scholar 

  • Daw RK (2004) People-centred approaches to water and environmental sanitation: Experiences with domestic defluoridation in India. 30th WEDC International Conference, Vientiane, Lao PDR

    Google Scholar 

  • Deng H, Yu X (2012) Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein. Chem Eng J 184:205–212

    Article  CAS  Google Scholar 

  • Dey S, Goswami S, Ghosh UC (2004) Hydrous ferric oxide (HFO)-a scavenger for fluoride from contaminated water. Water Air Soil Pollut 158:311–323

    Article  CAS  Google Scholar 

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Polish J Environ Stud 10:1–10

    CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling: hydrous ferric oxides. John Wiley and Sons Inc, USA

    Google Scholar 

  • Escudero C, Fiol N, Villaescusa I, Bollinger JC (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541

    Article  CAS  PubMed  Google Scholar 

  • Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84

    Article  CAS  Google Scholar 

  • Fuhrman HG, Tjell JC, McConchie D (2004) Adsorption of arsenic from water using activated neutralized red mud. Environ Sci Technol 38:2428–2434

    Article  CAS  Google Scholar 

  • Fujita T, Dodbiba G, Sadaki J, Shibayama A (2006) Removal of anionic metal ions from wastewater by hydroxide-type adsorbents. Chinese J Proc Eng 6:357–362

    CAS  Google Scholar 

  • Fu Q, Zhou X, Xu L, Hu B (2015) Fulvic acid decorated Fe3O4 magnetic nanocomposites for the highly efficient sequestration of Ni(II) from an aqueous solution. J Mol Liquid 208:92–98

    Article  CAS  Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 14:3973–3992

    Article  Google Scholar 

  • Giles DE, Mohapatra M, Anand S, Singh P (2011) Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manag 92:3011–3022

    Article  CAS  Google Scholar 

  • Goh KH, Lim TT, Dong Z (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Res 42:1343–1368

    Article  CAS  PubMed  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy and surface complexation modelling. J Colloid Interf Sci 234:204–216

    Article  CAS  Google Scholar 

  • Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS (2006) Adsorption of divalent cadmium (Cd(II)) from aqueous solutions onto chitosan-coated perlite beads. Ind Eng Chem Res 45:5066–5077

    Article  CAS  Google Scholar 

  • Hathaway SW, Rubel F (1987) Removing arsenic from drinking water. JAWWA 79:61–65

    Article  CAS  Google Scholar 

  • He H, Kang H, Ma S, Bai Y, Yang X (2010) High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials towards phosphate. J Colloid Interf Sci 343:225–231

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajarvi T, Liimatainen H, Niinimaa J, Sillanpaa M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpaa M (2016) A review on modification methods to cellulose-cased adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  • Huo Y, Ding W, Huang X, Xu J, Zhao M (2011) Fluoride removal by lanthanum alginate bead: adsorbent characterization and adsorption mechanism. Chinese J Chem Eng 19:365–370

    Article  CAS  Google Scholar 

  • Hussam A, Ahamed S, Munir AKM (2008) Arsenic filters for groundwater in Bangladesh: toward a sustainable solution, The Bridge, National Academy of Engineering Washington, DC, 38, 3

    Google Scholar 

  • Iyenger L (2005) Defluoridation of water using Activated Alumina Technology: studies carried out at IIT Kanpur, a report to UNICEF (www.watersanitationhygiene.org)

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  • Jeong Y, Fan M, Singh S, Chuang CL, Saha B, van Leeuwen JH (2007) Evaluation of iron oxide and aluminium oxide as potential arsenic(V) adsorbents. Chem Eng Process 46:1030–1039

    Article  CAS  Google Scholar 

  • Jin L, Bai R (2002) Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 18:9765–9770

    Article  CAS  Google Scholar 

  • Jodra Y, Mijangos F (2003) Cooperative biosorption of copper on calcium alginate enclosing iminodiacetic type resin. Environ Sci Technol 37:4362–4367

    Article  CAS  PubMed  Google Scholar 

  • Kamari A, Saime WNW, Ken LL (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21(3):296–302

    Article  CAS  Google Scholar 

  • Kandasamy J, Vigneswaran S, Hoang TTL, Chaudhary DNS (2009) Water and wastewater treatment technologies. In: Vigneswaran S (ed) Adsorption and biological filtration in wastewater treatment. Encyclopedia of Life Support Systems (EOLSS), UNESCO Publication, Paris

    Google Scholar 

  • Karageorgiou K, Paschalis M, Anastassakis GN (2007) Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J Hazard Mater A139:447–452

    Article  CAS  Google Scholar 

  • Karanfil T, Kilduff JE (1999) Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants. Environ Sci Technol 33:3217–3224

    Article  CAS  Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013) Nanosorbents: classification, preparation and applications (with emphasis on aqueous media). Chem Rev 113:7728–7768

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Chung JH, Choi SY, Cho SY, Kim SJ (2008) Adsorption characteristics of chromium ions onto composite alginate bead. In Proceedings of the World Congress on Engineering and Computer Science (WCECS), October 22–24, San Francisco, USA

    Google Scholar 

  • Konstantinos S, Stefanos M, Efthimia K, Manassis M, Lakshminarayana P (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci 2:43–70

    Google Scholar 

  • Ku Y, Chiou HM (2002) The adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut 133:349–360

    Article  CAS  Google Scholar 

  • Lambert E (2008) Spotlight: Building sustainable arsenic safe water solutions in India, Water conditioning and purification. http://support.waterforpeople.org/site/.../arsenic_solutions_india.pdf

  • Le Cloirec P, Brasquet C, Subrenat E (1997) Adsorption onto fibrous activated carbon: applications to water treatment. Ene Fu 11:331–336

    Article  Google Scholar 

  • Li F, Wang Y, Yang Q, Evans DG, Forano C, Duan X (2005) Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. J Hazard Mater 125(1–3):89–95

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  PubMed  Google Scholar 

  • Maity S, Chakravarty S, Bhattacharjee S, Roy BC (2005) A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Res 39:2579–2590

    Article  CAS  PubMed  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mayadevi S (2008a) Synthesis, characterization and study of adsorption behavior of Zn-Al layered double hydroxides for adsorption of fluoride from water. Appl Clay Sci 40:54–62

    Article  CAS  Google Scholar 

  • Mandal S, Mayadevi S (2008b) Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere 72:995–998

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mayadevi S (2009) Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: equilibrium and regeneration studies. J Hazard Mater 167:873–878

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mayadevi S, Kulkarni BD (2009a) Adsorption of aqueous selenite [Se(IV)] species on synthetic layered double hydroxide materials. Ind Eng Chem Res 48:7893–7898

    Article  CAS  Google Scholar 

  • Mandal S, Tichit D, Lerner DA, Marcotte N (2009b) Azoic dye hosted in layered double hydroxide: physicochemical characterization of the intercalated materials. Langmuir 25:10980–10986

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Kulkarni BD (2011) Separation strategies for processing of dilute liquid streams: review article. Int J Chem Eng 2011:1–19

    Article  CAS  Google Scholar 

  • Manning B, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–113

    Article  CAS  Google Scholar 

  • Mavura WJ, Bailey T (2002) Fluoride contamination in drinking water in the Rift Valley, Kenya and evaluation of the efficiency of a locally manufactured defluoridation filter. J Civil Eng JKUAT 8:79–88

    Google Scholar 

  • Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Design 129:271–296

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides – a review. Int J Eng Sci Technol 2:127–146

    Google Scholar 

  • Nasir K, Shujaat A, Aqidat T, Jamil A (1998) Immobilization of arsenic on rice husk. Adsorp Sci Technol 16:655–666

    Article  Google Scholar 

  • Ngai T, Dangol B, Murcott S, Shrestha RR (2006) Kanchan arsenic filter. Massachusetts Institute of Technology (MIT) and Environment and Public Health Organization (ENPHO), Kathmandu, Nepal

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2006) A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions. J Appl Polym Sci 99:2888–2897

    Article  CAS  Google Scholar 

  • Onyango MS, Matsuda H (2006) Fluoride removal from water using adsorption technique. Advan in Fluo Sci 2:1–48

    Article  CAS  Google Scholar 

  • Park HG, Chae MY (2004) Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol 79:1080–1083

    Article  CAS  Google Scholar 

  • Peak D, Sparks DL (2002) Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ Sci Technol 36:1460–1466

    Article  CAS  PubMed  Google Scholar 

  • Phan NH, Rio S, Faur C, Le L, Cloirec P, Nguyen TH (2006) Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon 44:2569–2577

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70

    Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Robertson FN (1989) Arsenic in groundwater under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–176

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, pp 33–58

    Google Scholar 

  • Sankar MU, Aigal S, Maliyekkal SM, Chaudhary A, Anshup AA, Chaudhari K, Pradeep T (2013) Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification. PNAS 110:8459–8464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeman JJ, Macleod H (1987) The effect of particle size and interfering ions on fluoride removal by activated alumina. Water SA 13:229–234

    CAS  Google Scholar 

  • SOES Report (n.d.) A simples household device to remove arsenic from groundwater and two years performance report of arsenic removal plant for treating groundwater with community participation. www.bvsde.paho.org/bvsacd/arsenico/technologies/das.pdf

  • Sontheimer H, Crittenden JC, Summers RS (1988) Activated carbon for water treatment, 2nd edn. DVGW-Forschungsstelle, Karlsruhe, Germany

    Google Scholar 

  • Sorg TJ (1978) Treatment technology to meet the interim primary drinking water regulations for inorganics: part 1, fluoride and nitrate. JAWWA 70:7–379

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. John Wiley and Sons Inc, USA

    Google Scholar 

  • Su T, Guan X, Gu G, Wang J (2008) Adsorption characteristics of As(V), Se(IV), and V(V) onto activated alumina: effects of pH, surface loading, and ionic strength. J Colloid Interf Sci 326:347–353

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solution—a review. Bioresour Technol 99:6017–6027

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, M L, Li Y, Huang Y (2011) Modified native cellulose fibers-A novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185:93–100

    Article  CAS  PubMed  Google Scholar 

  • Turk T, Alp I, Deveci H (2009) Adsorption of As(V) from water using Mg-Fe based hydrotalcite (FeHT). J Hazard Mater 171:665–670

    Article  CAS  PubMed  Google Scholar 

  • UN-WWDR-3 (2009) The United Nations World Water Development Report 3, UNESCO Publication

    Google Scholar 

  • USEPA (1978) Rubel F, Woosley RD, Removal of excess fluoride from drinking water. Technical report EPA 570/9–78-001, The office of water supply, United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (1980) Trussell RA, Trussell A, Kraft P, Selenium removal from groundwater using activated alumina. EPA-600/12–80-153, Unites States Environmental Protection Agency

    Google Scholar 

  • USEPA (1984) Rosemblum E, Clifford D, The equilibrium arsenic capacity of activated alumina. Report EPA-600/S2–83-107, United States Environmental Protection Agency

    Google Scholar 

  • USEPA (1986) Franck P, Clifford D, As(III) oxidation and removal from drinking water. Report EPA-600-52-86/021, United States Environmental Protection Agency

    Google Scholar 

  • USEPA (2009) Contaminant Candidate List 3 – CCL3 (https://www.epa.gov/ccl/contaminant-candidate-list-3-ccl-3)

    Google Scholar 

  • Venkobachar, C, Iyengar, L, Mudgal, AK (1997) Household defluoridation of drinking water using activated alumina. In Proceedings of 2nd International Workshop on Fluorosis Prevention and Defluoridation of Water, Ethiopia, Nov. 19–25, p 138–145

    Google Scholar 

  • Vijwani H, Nadagouda MN, Namboodiri V, Mukhopadhyay SM (2015) Hierarchical hybrid carbon nano-structures as robust and reusable adsorbents: Kinetic studies with model dye compound. Chem. Eng. J. 268:197–207.

    Article  CAS  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24

    Article  CAS  Google Scholar 

  • Wang S, Li Y, Zhao D, Xu C, Luan Z, Liang J, Wu D (2002) Preparation of alumina supported on carbon nanotubes and its application in fluoride adsorption from an aqueous solution. Chin Sci Bull 47:722–724

    Article  CAS  Google Scholar 

  • Wang Y, Qu J, Liu H, Wu R (2006) Hydrotalcite-supported Pd-Cu catalyst for nitrate adsorption and reduction from water. Chin Sci Bull 51:1431–1438

    CAS  Google Scholar 

  • Wang F, Zhang L, Wang Y, Liu X, Rohani S, Lu J (2017) Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and cu(II). Appl Surf Sci 420:970–981

    Article  CAS  Google Scholar 

  • Weber WJ (1972) Physicochemical processes for water quality control. Wiley Interscience Publication, John Wiley and Sons Inc, USA

    Google Scholar 

  • Weber WJ (1974) Adsorption proceses. Pure Appl Chem 37:375–392

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • WHO (2006) Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y, Fluoride in drinking water. World Health Organization, IWA Publishing, London, UK

    Google Scholar 

  • WHO (2007) Nitrate and nitrite in drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization, WHO/SDE/WSH/07.01/16

    Google Scholar 

  • Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, Du B, Li H (2012) Highly efficient removal of heavy metal ions by amine-functionalised mesoporous Fe3O4 nanoparticles. Chem Eng J 184:132–140

    Article  CAS  Google Scholar 

  • Yang X, Sun Z, Wang D, Forsling W (2007) Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides. J Colloid Interf Sci 308:395–404

    Article  CAS  Google Scholar 

  • Zhang G, Qu J, Liu H, Liu R, Wu R (2007a) Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Qu J, Liu H, Liu R, Li G (2007b) Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Qian G, Xu ZP, Shi H, Ruan X, Yang J, Frost RL (2012) Effective adsorption of sodium dodecyl-sulphate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism. J Colloid Interf Sci 367:264–271

    Article  CAS  Google Scholar 

  • Zhao G, Wu X, Tan X, Wang X (2011) Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Sci J 4:19–31

    Article  Google Scholar 

  • Zhao Y, Huang M, Wu W, Jin W (2009) Synthesis of the cotton cellulose based Fe(III)-loaded adsorbent for arsenic(V) removal from drinking water. Desalination 249:1006–1011

    Article  CAS  Google Scholar 

  • Zhou L, Gao C, Xu W (2010) Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl Mater Interf 2:1483–1491

    Article  CAS  Google Scholar 

  • Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41:6149–6155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, S., Muralidharan, C., Mandal, A.B. (2019). Water Pollution Remediation Techniques with Special Focus on Adsorption. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_3

Download citation

Publish with us

Policies and ethics