Skip to main content

Bioremediation of Polythenes and Plastics: A Microbial Approach

  • Chapter
  • First Online:
Approaches in Bioremediation

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Plastic bags and materials made out of plastic have become an essential part of our lives. We use these very frequently either to carry things from here and there or to keep things safe in a proper place. This indispensable necessity has become a necessary evil. It is proving to be an environmental threat. Fossil fuel like natural gas and petroleum is used to make plastics. Lethal chemicals were released into water bodies from these plastic bottles we buy. As plastic is non-biodegradable, it gets discarded into the environment causing a pollution havoc. A number of ways have been devised to fight the plastic pollution like physical degradation and chemical degradation of plastics. These methods have their own advantages and disadvantages. Now the most recent advances in this direction have been the process of biodegradation where we employ microbes. Microorganisms have a crucial role in biodegradation of materials including synthetic polymers in natural environments. Here we present a vivid account of the bioremediation of plastics and polythenes with the help of microbes. There are different types of plastics and plastic products. We need to probe into the constituents as well as the strategies for degradation of such products. The previous methods like the physical and the chemical methods of degradation of the xenobiotic products like plastics do not serve as the eco-friendly solution to overcome the dumping of the plastics in the environment. Thus we need to probe and devise ways and means to get a permanent and complete solution for the accumulation of plastic wastes in our surroundings. The perfect answer for the purpose is the use of microbes which produce enzymes to be used for the biodegradation of the plastic products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alshehrei F (2017) Biodegradation of low density polyethylene by fungi isolated from Red Sea water. Int J Curr Microbiol App Sci 6(8):1703–1709

    Article  Google Scholar 

  • Álvarez-Barragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R et al (2016) Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol 82:5225–5235

    Article  PubMed  PubMed Central  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi, Fungi as Bioremediators, soil biology, vol 32. Springer, Berlin

    Google Scholar 

  • Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A 115:E4350–E4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth M, Honak A, Oeser T, Wei R, Belisario-Ferrari MR, Then J et al (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2012) Microbial population associated with plastic degradation. Sci Rep 5:272–274

    Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21:575–579

    Article  CAS  Google Scholar 

  • Dang TCH et al (2018) Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Adv Nat Sci: Nanosci Nanotechnol 9(1):015014. https://doi.org/10.1088/2043-6254/aaabaf

  • Chinaglia S, Maurizio T, Degli-Innocenti F (2018) Biodegradation rate of biodegradable plastics at molecular level. Polym Degrad Stab 147:237–244

    Article  CAS  Google Scholar 

  • Datta PK, Mishra K, Kumar MNVR (1998) Popular plastics and packaging. Mahindra Publishers, New Delhi, p 73

    Google Scholar 

  • Fujisawa M, Hirai H, Nishida T (2001) Degradation of polyethylene and nylon-66 by the laccase-mediator system. J Polym Environ 9:103–108

    Article  CAS  Google Scholar 

  • Gajendiran A, Krishnamoorthy S, Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Helbling C, Abanilla M, Lee L, Karbhari VM (2006) Issues of variability and durability under synergistic exposure conditions related to advanced polymer composites in civil infrastructure. Compos Part A Appl Sci Manuf 37(8):1102–1110

    Article  Google Scholar 

  • Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44(3):222–229

    Article  CAS  Google Scholar 

  • Ipekoglu B, Böke H, Cizer O (2007) Assessment of material use in relation to climate in historical buildings. Build Environ 42:970–978

    Article  Google Scholar 

  • Jeon HJ, Kim MN (2015) Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int Biodeterior Biodegrad 103:141–146

    Article  CAS  Google Scholar 

  • Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:3–4

    Google Scholar 

  • Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, Xu J, Khan A, Munir S, Hasan F (2017) Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ Pollut 225:469–480

    Article  CAS  PubMed  Google Scholar 

  • Kumar AA, Karthick K, Arumugam KP (2011) Biodegradable polymers and its applications. Int J Biosci Biochem Bioinforma 1(3):173–176

    Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  PubMed  Google Scholar 

  • Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdiyah D, Mukti BH (2013) Isolation of polyethylene plastic degrading-bacteria. Biosci Int 2:29–32

    Google Scholar 

  • Mukherjee S, Kundu PP (2014) Alkaline fungal degradation of oxidized polyethylene in black liquor: studies on the effect of lignin peroxidases and manganese peroxidases. J Appl Polym Sci 131:40738

    Article  Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3(3):597–611

    Google Scholar 

  • Oda Y, Oida N, Urakami T, Tonomura K (1997) Polycaprolactone depolymerase produced by the bacterium Alcaligenes faecalis. FEMS Microbiol Lett 152:339–343

    Article  CAS  PubMed  Google Scholar 

  • Odusanya SA, Nkwogu JV, Alu N, Udo GE, Ajao JA, Osinkolu GA, Uzomah AC (2013) Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria. Niger Food J 31(2):63–72

    Article  Google Scholar 

  • Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong SY, Chee JY, Sudesh K (2017) Degradation of Polyhydroxyalkanoate (PHA): a review. J SibFU 10(2):211

    Google Scholar 

  • Pramila R, Vijaya Ramesh K (2012) Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J Microbiol Biotechnol Res 1(4):131–136

    Google Scholar 

  • Raaman N, Rajitha N, Jayshree A, Raman J (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Ind Res 1:313–316

    CAS  Google Scholar 

  • Restrepo-Florez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene – a review. Int Biodeterior Biodegrad 88:83–90

    Article  CAS  Google Scholar 

  • Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Handbook of hydrocarbon and lipid microbiology, 2, 781–797, https://doi.org/10.1007/978-3-540-77587-4_59

  • Ronkvist ASM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Nunez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah AA, Fariha H (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and a soil slurry. J Agric Food Chem 50:5070–5076

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Gupta K (2014) Screening and identification of low density polyethylene (LDPE) degrading soil fungi isolated from polythene polluted sites around Gwalior city (MP). Int Curr Microbiol Appl Sci 3:443–448

    CAS  Google Scholar 

  • Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584

    Article  CAS  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Biol 364:2127–2139

    Article  CAS  Google Scholar 

  • Sowmya HV, Ramalingappa MK, Thippeswamy B (2014) Biodegradation of polyethylene by Bacillus cereus. Adv Polym Sci Technol-Int J 4:28–32

    Google Scholar 

  • Sudhakar M, Trishul A, Doble M, Suresh Kumar K, Syed Jahan S et al (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stab 92:1743–1752

    Article  CAS  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2027–2045

    Article  CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemar lipase. Agric Biol Chem 42:1071–1072

    CAS  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignesh R, Deepika RC, Manigandan P, Janani R (2016) Screening of plastic degrading microbes from various dumped soil samples. Int Res J Eng Tech 3(4):2493–2498

    Google Scholar 

  • Webb JS, Van der Mei HC, Nixon M, Eastwood IM, Greenhalgh M, Read SJ, Robson GD, Handley PS (1999) Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to PVC. Appl Environ Microbiol 65:3575–3581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  CAS  Google Scholar 

  • Yang J, Yang Y, Wu W-M, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Hiraga K, Talehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278):1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann W, Billig S (2011) Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv Biochem Eng Biotechnol 125:97–120

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubha Rani Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.R. (2018). Bioremediation of Polythenes and Plastics: A Microbial Approach. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_6

Download citation

Publish with us

Policies and ethics