Skip to main content

Potential for CRISPR Genetic Engineering to Increase Xenobiotic Degradation Capacities in Model Fungi

  • Chapter
  • First Online:
Book cover Approaches in Bioremediation

Abstract

Xenobiotic compounds are produced in high amounts by many different sources and can be degraded by different microbial species in different environments. However, they often accumulate, thus producing toxic effects in living organisms. Fungi represent the most abundant biomass in soils. Unique features of fungi include the capability to disperse hyphae through soil to support the growth of other microorganisms, a resistance to high concentrations of pollutants, and the capacity to remove pollutants by physical adsorption and/or intra- and extracellular enzymatic mechanisms. These characteristics serve to make fungi promising microorganisms for in situ and ex situ bioremediation of xenobiotic compounds. The latest advances in genetic engineering by the use of CRISPR/Cas9 technology based on the expression of Cas9 endonuclease and the design of guide RNA molecules allow the editing of specific regions of the receptor genome. In the context of bioremediation, by applying novel genetic engineering techniques, CRISPR/Cas9 could represent a powerful tool for the modification and advancement of xenobiotic metabolism in fungi. This opens a hitherto largely unexploited technology for biological treatment of xenobiotic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6:183–205

    Article  PubMed  Google Scholar 

  • Aguiar TQ, Dinis C, Domingues L (2014) Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering. Fungal Genet Biol 68:1–8

    Article  CAS  PubMed  Google Scholar 

  • Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008–1014

    Article  CAS  Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Barcellos FG, Fungaro MH, Furlaneto MC, Lejeune B, Pizziranikleiner AA, de Azevedo JL (1998) Genetic analysis of Aspergillus nidulans unstable transformants obtained by the biolistic process. Can J Microbiol 44:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Basenko EY, Pulman JA, Shanmugasundram A, Harb OS, Crouch K, Starns D, Warrenfeltz S, Aurrecoechea C, Stoeckert CJ, Kissinger JC (2018) FungiDB: an integrated bioinformatic resource for fungi and oomycetes. J Fungi 4:39

    Article  Google Scholar 

  • Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills—chemical analysis and toxicity tests. Water Res 38:3845–3858

    Article  CAS  PubMed  Google Scholar 

  • Burstein D, Sun CL, Brown CT, Sharon I, Anantharaman K, Probst AJ, Thomas BC, Banfield JF (2016) Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat Commun 7:10613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Li G, Lin C, Shi T, Zhai L, Chen Y, Huang G (2013) Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiol Res 168(6):340–350

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S (2016) Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. BBA-Mol Cel Res 1863:2333–2344

    CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation 172. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Chapter  Google Scholar 

  • Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P (2013) The Aspergillus genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–D710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty BN (2015) Electroporation mediated DNA transformation of filamentous fungi. Genet Trans Syst Fungi 1:67–79

    Google Scholar 

  • Chylinski K, Le Rhun A, Charpentier E. (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biology 10(5):726–737

    Google Scholar 

  • Connell DW (2018) General characteristics of organic compounds which exhibit bioaccumulation. Bioaccumulation of xenobiotic compounds. CRC Press, Boca Raton, pp 47–58

    Book  Google Scholar 

  • Davies P, Kumar S, Sastry-Dent L (2017) Chapter three – use of zinc-finger nucleases for crop improvement. Prog Mol Biol Transl 149:47–63

    Article  Google Scholar 

  • de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park H-S, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVC, Vesth TC, Visser J, Yu J-H, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descorps-Declère S, Barba M, Labedan B (2008) Matching curated genome databases: a non trivial task. BMC Genomics 9:501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 1258096:346

    Google Scholar 

  • Dufresne M, Daboussi MJ (2010) Development of impala-based transposon systems for gene tagging in filamentous fungi. Methods Mol Biol 638:41–54

    Article  CAS  PubMed  Google Scholar 

  • Fowler T, Berka RM (1991) Gene expression systems for filamentous fungi. Curr Opin Biotechnol 2:691–697

    Article  CAS  PubMed  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  Google Scholar 

  • Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell: EC 14:00107–00115

    Article  CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Graham DB, Root DE (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  CAS  PubMed  Google Scholar 

  • Guha TK, Edgell DR (2017) Applications of alternative nucleases in the age of CRISPR/Cas9. Int J Mol Sci 18:2565

    Article  CAS  PubMed Central  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Herzog RW, Daniell H, Singh NK, Lemke PA (1996) A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl Microbiol Biotechnol 45:333–337

    Article  CAS  Google Scholar 

  • Holzbaur ELF, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155:626–633

    Article  CAS  PubMed  Google Scholar 

  • Huarte-Bonnet C, Kumar S, Saparrat MC, Girotti JR, Santana M, Hallsworth JE, Pedrini N (2018) Insights into hydrocarbon assimilation by Eurotialean and Hypocrealean Fungi: roles for CYP52 and CYP53 clans of cytochrome P450 genes. Appl Biochem Biotechnol 184:1047–1060

    Article  CAS  PubMed  Google Scholar 

  • Iovdijová A, Bencko V (2010) Potential risk of exposure to selected xenobiotic residues and their fate in the food chain-part I. Classification of xenobiotics. Ann Agric Environ Med 17:183–192

    PubMed  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen KA, Houtman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Yang Y, Zhang X (2014) Review on the biodegradation and conversion mechanisms of typical polycyclic aromatic hydrocarbons. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sin (Pet Process Sect) 30:1137–1150

    CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816

    Article  CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10(5):841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner H, Pecyna MJ, Buchhaupt M, Ullrich R, Hofrichter M (2016) Draft genome sequence of the chloroperoxidase-producing fungus Caldariomyces fumago Woronichin DSM1256. Genome Announc 4:e00774

    Article  PubMed  PubMed Central  Google Scholar 

  • Knackmuss H-J (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotechnol 51:287–295

    Article  CAS  Google Scholar 

  • Knop D, Ben-Ari J, Salame TM, Levinson D, Yarden O, Hadar Y (2014) Mn2+-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Appl Microbiol Biotechnol 98:6795–6804

    Article  CAS  PubMed  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    Article  CAS  PubMed  Google Scholar 

  • Kuivanen J, Penttilä M, Richard P (2015) Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production. Microb Cell Factories 14:2

    Article  CAS  Google Scholar 

  • Kuivanen J, Wang Y-MJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Factories 15:210

    Article  CAS  Google Scholar 

  • Li D, Tang Y, Lin J, Cai W (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Factories 16:168

    Article  CAS  Google Scholar 

  • Liers C, Pecyna MJ, Kellner H, Worrich A, Zorn H, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97:5839–5849

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Koonin EV (2013) CRISPR-Cas systems and cas protein families. In: Protein families: relating protein sequence, structure, and function. Wiley, New York, pp 341–381

    Chapter  Google Scholar 

  • Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620–628

    Article  CAS  Google Scholar 

  • Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61

    Article  CAS  PubMed  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–444

    Article  Google Scholar 

  • Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd 35:120–128

    Article  CAS  Google Scholar 

  • Mojica JM, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol 36:244–246

    Article  CAS  PubMed  Google Scholar 

  • Mojica JM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot J-P, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz IG, Prieto J, Subramanian S, Coloma J, Redondo P, Villate M, Merino N, Marenchino M, D'Abramo M, Gervasio FL, Grizot S, Daboussi F, Smith J, Chion-Sotinel I, Pâques F, Duchateau P, Alibés A, Stricher F, Serrano L, Blanco FJ, Montoya G (2011) Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39(2):729–743

    Article  CAS  PubMed  Google Scholar 

  • Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502

    Article  CAS  PubMed  Google Scholar 

  • Nature Methods (2012) Method of the year 2011. Nat Methods 9:1

    Article  CAS  Google Scholar 

  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Park J, Kim S, Kim H (2007) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562–D571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897

    Article  CAS  PubMed  Google Scholar 

  • Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409:529

    Article  CAS  PubMed  Google Scholar 

  • Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G (2013) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97:705–717

    Article  CAS  PubMed  Google Scholar 

  • Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764

    Article  CAS  PubMed  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegrad 54:45–52

    Article  CAS  Google Scholar 

  • Poulsen BR, Nøhr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, Ruijter GJ (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 272:1313–1325

    Article  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128

    Article  CAS  PubMed  Google Scholar 

  • Riggle PJ, Kumamoto CA (1998) Genetic analysis in fungi using restriction-enzyme-mediated integration. Curr Opin Microbiol 1(4):395–399

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2008) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Article  CAS  PubMed  Google Scholar 

  • Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89(3):501–512

    Article  CAS  PubMed  Google Scholar 

  • Santhanam P (2012) Random insertional mutagenesis in fungal genomes to identify virulence factors. Methods Mol Biol 835:509–517

    Article  CAS  PubMed  Google Scholar 

  • Schmid J, Stahl U, Meyer V (2009) Genetic and metabolic engineering in filamentous fungi. In: Anke T, Weber D (eds) Physiology and genetics: selected basic and applied aspects. Springer, Berlin, Heidelberg, pp 377–392

    Chapter  Google Scholar 

  • Schmidt-Dannert C (2014) NextGen microbial natural products discovery. Microb Biotechnol 8:26–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10(5):891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443

    Article  CAS  PubMed  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuckey S, Storici F (2013) Chapter eight – gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae. Methods Enzymol 533:103–131

    Article  CAS  PubMed  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot N (2001) Molecular and cellular biology of filamentous fungi: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Thion C, Cébron A, Beguiristain T, Leyval C (2012) PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad 68:28–35

    Article  CAS  Google Scholar 

  • Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D (2003) The biphenyl-and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 69:4837–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran NH, Urase T, Ngo HH, Hu J, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731

    Article  CAS  PubMed  Google Scholar 

  • Wakai S, Arazoe T, Ogino C, Kondo A (2017) Future insights in fungal metabolic engineering. Bioresour Technol 245:1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo B, Miao Z, Tang K (2007) Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI). FEMS Microbiol Lett 273(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Wang D, He D, Li G, Gao S, LV H, Shan Q, Wang L (2014) An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus. J Microbiol Methods 98:114–118

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Shao Y, Guan Y, Li L, Wu L, Chen F, Liu M, Chen H, Ma Y, Ma X, Liu M, Li D (2015) Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Sci Rep 5:17517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watford S, Warrington SJ (2017) Bacterial DNA mutations. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Wisecaver JH, Slot JC, Rokas A (2014) The evolution of fungal metabolic pathways. PLoS Genet 10:e1004816

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittich R-M, González B (2016) Editorial overview: environmental biotechnology–quo vadis? Curr Opin Biotechnol 38:viii–viix

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Smith C, Cheng L (2013) Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep 3:2376

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y-M, Lin F-L, Gao H, Zou G, Zhang J-W, Wang G-Q, Chen G-D, Zhou Z-H, Yao X-S, Hu D (2017) Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Sci Rep 7:9250

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

HPS acknowledges the Fulbright Program (PS00247479) for the Open Study/Research Grant. RNP was funded by Ramón y Cajal program (RYC-2011-08653). EA gratefully thanks the Ministry of Economy and Competitiveness (MINECO) and FEDER funds for co-funding the Ramón y Cajal contract (RYC-2013-12481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Aranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stein, H.P., Navajas-Pérez, R., Aranda, E. (2018). Potential for CRISPR Genetic Engineering to Increase Xenobiotic Degradation Capacities in Model Fungi. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_4

Download citation

Publish with us

Policies and ethics