Skip to main content

Omics Approaches: Impact on Bioremediation Techniques

  • Chapter
  • First Online:
Approaches in Bioremediation

Abstract

Microbiology has traditionally relied on the culture of microorganisms using general or selective growth media. This methodology allowed the isolation and characterization of a myriad of microbes, but in the past three decades, the disadvantages of this approach have become evident, opening the scope to other methodologies in microbiological research. The uprising of the “omics” techniques has imposed a paradigm shift for biologists, changing the way that we formulate biological questions as well as the data acquisition, manipulation, and interpretation processes. Being a powerful tool as they are, the potential and creative applications of the “omics” methodologies to different fields remain a challenge.

The outcome of “omics” techniques is purely analytical, and therefore it is disputed whether they can be of use to the biotechnological industry. In this chapter, we describe the applications and impact of the different “omics” techniques in the bioremediation of polluted environments and in the generation of novel products that are of interest for this industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram F, Enright AM, O’Reilly J, Botting CH, Colling G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110:1550–1560

    Article  CAS  PubMed  Google Scholar 

  • Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O (2017) Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31:61–72

    Article  Google Scholar 

  • Batista-García RA, Sánchez-Carbente MR, Talia P, Jackson SA, O’Leary ND, Dobson ADW, Folch-Mallol JL (2016) From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels, Bioproducts and Biorefining 10 (6):864-882

    Google Scholar 

  • Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Jain RK (2010) Biodegradation: gaining insight through proteomics. Biodegradation 21:861–879

    Article  CAS  PubMed  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569

    Article  CAS  PubMed  Google Scholar 

  • El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R (2015) “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49:11281–11291

    Article  PubMed  Google Scholar 

  • Handelsmanl J, Rondon MR, Goodman RM, Brady SF, Clardy J (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–R249

    Article  Google Scholar 

  • Hanreich A, Heyer R, Benndorf D, Rapp E, Pioch M, Reichl U, Klocke M (2012) Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Can J Microbiol 58:917–922

    Article  CAS  PubMed  Google Scholar 

  • Hernández-López EL, Ramírez-Puebla ST, Vazquez-Duhalt R (2015) Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genomics Data 5:235–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Kan J, Hanson TE, Ginter JM, Wang K, Chen F (2005) Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Syst 1:7–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev 73:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kweon O, Cerniglia CE (2011) Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways. Compr Biotechnol 6:105–114

    Google Scholar 

  • Kuhn R, Benndorf D, Rapp E, Reichl U, Palese LL, Pollice A (2011) Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics 11:2738–2744

    Article  CAS  PubMed  Google Scholar 

  • Lacerda CMR, Choe LH, Reardon KF (2007) Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Lin YW, Tuan NN, Huang SL (2016) Metaproteomic analysis of the microbial community present in a thermophilic swine manure digester to allow functional characterization: a case study. Int Biodeterior Biodegrad 115:64–73

    Article  Google Scholar 

  • Liu D, Li M, Xi B, Zhao Y, Wei Z, Song C, Zhu C (2015) Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microb Biotechnol 8:950–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Guo C, Dang Z, Liang X (2017) Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 137:256–264

    Article  CAS  PubMed  Google Scholar 

  • Loh KC, Cao B (2008) Paradigm in biodegradation using Pseudomonas putida-a review of proteomics studies. Enzym Microb Technol 43:1–12

    Article  CAS  Google Scholar 

  • Lucero Camacho-Morales R, García-Fontana C, Fernández-Irigoyen J, Santamaría E, González-López J, Manzanera M, Aranda E (2018) Anthracene drives sub-cellular proteome-wide alterations in the degradative system of Penicillium oxalicum. Ecotoxicol Environ Saf 159:127–135

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Nzila A, Ramirez CO, Musa MM, Sankara S, Basheer C, Li QX (2018) Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeterior Biodegrad 130:40–47

    Article  CAS  Google Scholar 

  • Oliveira JS, Araújo WJ, Figueiredo RM, Silva-Portela RB, Guerra ADB, Carla S, Minnicelli C, Carlos AC, Tereza A, Vasconcelos RD, Freitas AT, Agnez-Lima L (2017) Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near- equatorial biomes have higher abundance of genes with potential for bioremediation. BMC Microbiol 17:1–10

    Article  Google Scholar 

  • Osman C, Wilmes C, Tatsuta T, Langer T (2007) Prohibitins interact genetically with Atp23, a novel processing peptidase and chaperone for the F1Fo-ATP synthase. Mol Biol Cell 18:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Peres G, Rutgers M (2012) Soil biodiversity, biological indicators and soil ecosystem services – an overview of European approaches. Curr Opin Environ Sustain 4:529–538

    Article  Google Scholar 

  • Santos PM, Benndorf D, Sá-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

    Article  CAS  PubMed  Google Scholar 

  • Shahi A, Aydin S, Ince B, Ince O (2016a) Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicol Environ Saf 125:153–160

    Article  CAS  PubMed  Google Scholar 

  • Shahi A, Aydin S, Ince B, Ince O (2016b) Reconstruction of bacterial community structure and variation for enhanced petroleum hydrocarbons degradation through biostimulation of oil contaminated soil. Chem Eng J 306:60–66

    Article  CAS  Google Scholar 

  • Solazzo C, Dyer JM, Clerens S, Plowman J, Peacock EE, Collins MJ (2013) Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. Int Biodeterior Biodegrad 80:48–59

    Article  CAS  Google Scholar 

  • Szewczyk R, Soboń A, Sylwia R, Dzitko K, Waidelich D, Długoński J (2014) Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int Biodeterior Biodegrad 93:44–53

    Article  CAS  Google Scholar 

  • Szewczyk R, Soboń A, Słaba M, Długoński J (2015) Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J Hazard Mater 291:52–64

    Article  CAS  PubMed  Google Scholar 

  • Vandera E, Samiotaki M, Parapouli M, Panayotou G, Koukkou AI (2015) Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. J Proteomics 113:73–89

    Article  CAS  PubMed  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133:283–291

    Article  CAS  PubMed  Google Scholar 

  • Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Wilmes P, Wexler M, Bond PL (2008) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS One 3:e1778

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alberto Batista-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Llano, Y., Martínez-Ávila, L., Batista-García, R.A. (2018). Omics Approaches: Impact on Bioremediation Techniques. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_3

Download citation

Publish with us

Policies and ethics