Skip to main content

Transcriptomics as a First Choice Gate for Fungal Biodegradation Processes Description

  • Chapter
  • First Online:
  • 1349 Accesses

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Environmental impacts of xenobiotic compounds released to air, water, and soil have opened a way for bioremediation to emerge as a green technology that can be safely applied to reduce pollutant concentrations to a minimum in a relative short period of time. “Hard to break” molecules such as asphaltenes, celluloses, and dyes are better treated with mycoremediation techniques. Fungi are higher eukaryotic microorganisms that secrete a good quantity of enzymatic complexes to break covalent bonds on these xenobiotics. As mycoremediation analysis grew, a better understanding of fungal metabolism on extreme environmental conditions is needed to deepen bioremediation-related genes and processes. These can be reached by global molecular approaches such as transcriptomic studies. Until now, limited genomic functional annotations and efficient nucleic acid extractions in bioremediation processes are the main delaying issues in the advancing way to the understanding of these interesting fungal metabolic activities. In this section we expose common technical strategies of RNA extraction protocols and comparison of recent transcriptional studies, as a basic introduction to those interested in applying genomic global approaches, in this area in construction of future efficient application of mycoremediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asemoloye MD, Ahmad R, Jonathan SG (2018) Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ Pollut 235:55–64

    Article  CAS  PubMed  Google Scholar 

  • Audia JP, Patton MC, Winkler HH (2008) DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl Environ Microbiol 74:7809–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M, Wesolowski-Louvel M, Marmeisse R (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280

    Article  CAS  PubMed  Google Scholar 

  • Boon N, Marlé C, Top EM, Verstraete W (2000) Comparison of the spatial homogeneity of physico-chemical parameters and bacterial 16S rRNA genes in sediment samples from a dumping site for dredging sludge. Appl Microbiol Biotechnol 53:742–747

    Article  CAS  PubMed  Google Scholar 

  • Bulow SE, Francis CA, Jackson GA, Ward BB (2008) Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays. Environ Microbiol 10:3057–3069

    Article  CAS  PubMed  Google Scholar 

  • Burton RJ, Coley-Smith JR (1993) Production and leakage of antibiotics by Rhizoctonia cerealis, R. oryzae-sativae and R. tuliparum. Mycol Res 97:86–90

    Article  CAS  Google Scholar 

  • Chigu NL, Hirosue S, Nakamura C, Teramoto H, Ichinose H, Wariishi H (2010) Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 87(5):1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Darby AC, Hall N (2008) Fast forward genetics. Nat Biotechnol 26:1248–1249

    Article  CAS  PubMed  Google Scholar 

  • Das S (ed) (2014) Microbial biodegradation and bioremediation. Elsevier, Rourkela Odisha, pp 167–201

    Book  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) From the cover: microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Liu L, Liu X, Zhou H, Lu J, Huang S, Wang Z (2009) The occurrence and spatial distribution of organo phosphorous pesticides in Chinese surface water. Bull Environ Contam Toxicol 82:223–229

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint FI (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:3042

    Article  Google Scholar 

  • Gow NA, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5:1–25

    Google Scholar 

  • Guillén-Navarro K, Herrera-López D, López-Chávez MY, Cancino-Gómez M, Reyes-Reyes AL (2015) Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples. Folia Microbiol 60(6):551–558

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432

    Article  Google Scholar 

  • He Y, Zhao Y, Zhou G, Huang M (2009) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from aged refuse for microbial community analysis. Word J Microbiol Biotechnol 25(11):2043–2051

    Article  CAS  Google Scholar 

  • Hernández-López EL, Ramírez-Puebla ST, Vazquez-Duhalt R (2015) Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genom Data 5:235–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481

    Article  CAS  PubMed  Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2002a) US Patent No. 6,383,800. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2002b) US Patent No. 6,387,689. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2002c) US Patent No. 6,387,691. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2002d) US Patent No. 6,495,134. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2003) US Patent No. 6,664,102. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2004) US Patent No. 6,727,087. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Illman BL, Yang VW, Ferge LA (2005) US Patent No. 6,972,169. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Jiang YX, Wu JG, Yu KQ, Ai CX, Zou F, Zhou HW (2011) Integrated lysis procedures reduces extraction biases of microbial DNA from mangrove sediments. J Biosci Bioeng 111(2):153–157

    Article  CAS  PubMed  Google Scholar 

  • Kameshwar AKS, Qin W (2017) Metadata analysis of Phanerochaete chrysosporium gene expression data identified common CAZymes encoding gene expression profiles involved in cellulose and hemicellulose degradation. Int J Biol Sci 13(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemi M, Tahmasbi A, Valizadeh R, Naserian A, Soni A (2012) Organophosphate pesticides: a general review. Agric Sci Res J 2:512–522

    Google Scholar 

  • Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. Rev Environ Contam Toxicol 237:105–121

    CAS  PubMed  Google Scholar 

  • Lamar RT, Lestan D, Smith CE, Dietrich DM (2000) US Patent No. 6,143,549. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A 100:4191–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maghsoudi E, Fortin N, Greer C, Maynard C, Pagé A, Duy SV, Dorner S (2016) Cyanotoxin degradation activity and mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. Environ Sci Process Impact 18(11):1417–1426

    Article  CAS  Google Scholar 

  • Mathews SL, Pawlak J, Grunden AM (2015) Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl Microbiol Biotechnol 99(7):2939–2954

    Article  CAS  PubMed  Google Scholar 

  • McMaster R (2018) Is the fourth industrial revolution relevant to you? Nurs Health Sci 20(2):139–141

    Article  PubMed  Google Scholar 

  • Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6:419

    Article  CAS  PubMed  Google Scholar 

  • Mohite BV, Koli SH, Narkhede CP, Patil SN, Patil SV (2017) Prospective of microbial exopolysaccharide for heavy metal exclusion. Appl Biochem Biotechnol 183(2):582–600

    Article  CAS  PubMed  Google Scholar 

  • Morais D, Pylro V, Clark IM, Hirsch PR, Tótola MR (2016) Responses of microbial community from tropical pristine coastal soil to crude oil contamination. Peer J 4:1733

    Article  Google Scholar 

  • Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580

    PubMed  PubMed Central  Google Scholar 

  • Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2014) Review of EPA’s integrated risk information system (IRIS) process. National Academies Press, Washington, DC

    Google Scholar 

  • Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI (2007) Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microbial Ecol 54(2):252–263

    Article  CAS  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4(1):16

    Article  Google Scholar 

  • Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229

    Article  CAS  PubMed  Google Scholar 

  • Parro V, Moreno-Paz M, Gonzalez-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464

    Article  CAS  PubMed  Google Scholar 

  • Poretsky RS, Bano N, Buchan A, Lecleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Guo Z, Liu H, Zhou D, Han Y, Yang R (2008) DNA microarray-based global transcriptional profiling of Yersinia pestis in multicellularity. J Microbiol 46:557–563

    Article  CAS  PubMed  Google Scholar 

  • Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Grigoriev IV (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14(6):1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues EM, Kalks KH, Fernandes PL, Tótola MR (2015) Bioremediation strategies of hydrocarbons and microbial diversity in the Trindade Island shoreline. Mar Pollut Bull 101(2):517–525

    Article  CAS  PubMed  Google Scholar 

  • Romanelli AM, Fu J, Herrera ML, Wickes BL (2014) A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses 57(10):612–622

    Article  CAS  PubMed  Google Scholar 

  • Ruta LL, Kissen R, Nicolau I, Neagoe AD, Petrescu AJ, Bones AM, Farcasanu IC (2017) Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol 101(14):5749–5763

    Article  CAS  PubMed  Google Scholar 

  • Saǧ Y, Özer D, Kutsal T (1995) A comparative study of the biosorption of lead(II) ions to Z. ramigera and R. arrhizus. Process Biochem 30:169–174

    Article  Google Scholar 

  • Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449

    Article  CAS  Google Scholar 

  • Sato S, Feltus FA, Iyer P, Tien M (2009) The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak. Curr Genet 55(3):273–286

    Article  CAS  PubMed  Google Scholar 

  • Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut R 19(4):1066–1083

    Article  Google Scholar 

  • Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ (2007) Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212

    Article  CAS  PubMed  Google Scholar 

  • Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster FSC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:2527

    Article  Google Scholar 

  • Vats A, Mishra S (2018) Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran. J Hazard Mater 344:466–479

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Verma PK, Meher AK, Dwivedi S, Bansiwal AK, Pande V, Chakrabarty D (2016) A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics 8(3):344–353

    Article  CAS  PubMed  Google Scholar 

  • Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142(1):91–95

    Article  CAS  PubMed  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, Mchardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Garcia-Martin H, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Whitby C (2010) Microbial naphthenic acid degradation. Adv Appl Microbiol 70:93–125

    Article  CAS  PubMed  Google Scholar 

  • Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229

    Article  Google Scholar 

  • World Health Organization (2004) Guidelines for drinking-water quality: recommendations, vol 1. World Health Organization, Geneva

    Google Scholar 

  • Wymelenberg AV, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Kersten PJ (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76(11):3599–3610

    Article  Google Scholar 

  • You Y, Fu C, Zeng X, Fang D, Yan X, Sun B, Xiao D, Zhang J (2008) A novel DNA microarray for rapid diagnosis of enteropathogenic bacteria in stool specimens of patients with diarrhea. J Microbiol Methods 75:566–571

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Tang J, Sun J, Yu C, Liu Z, Chen J (2015) Hex1-related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos. Biotechnol Lett 37(7):1421–1429

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elva T. Aréchiga-Carvajal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ledezma-Villanueva, A., Adame-Rodríguez, J.M., Aréchiga-Carvajal, E.T. (2018). Transcriptomics as a First Choice Gate for Fungal Biodegradation Processes Description. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_2

Download citation

Publish with us

Policies and ethics