Skip to main content

Nanobioremediation: An Innovative Approach to Fluoride (F) Contamination

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Fluoride (F) is the 13th most commonly found compound in the earth’s crust and occurs naturally in soil, water, and air. It is a crucial component of human health in minute quantities as it helps in the formation of tooth enamel and bone. However, according to World Health Organization guidelines, the permissible limit of F uptake is 1.5 mg/L; above this limit it causes severe diseases. For remediation, several conventional technologies have been developed, such as phytoremediation, electrokinetic systems, excavation, adsorption, reverse osmosis, and landfills. Nanobioremediation is a technique for removing pollutants from contaminated sites, using plants, microbes, etc., with the help of nanotechnology. Thus, certain nanomaterials—such as carbon-based nanomaterials, nanoscale iron nanoparticles, and graphene-based nanomaterials—seem to be more promising than most nanomaterials because of their high reactivity and adsorption capacity for F remediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almas K, Shakir ZF, Afzal M (1999) Prevalence and severity of dental fluorosis in Al-Qaseem province Kingdom of Saudi Arabia. Trop Dental J 22(85):44–47

    CAS  Google Scholar 

  • Ando M, Tadano M, Asanuma S, Tamura K, Matsushima S, Watanabe T, Cao S (1998) Health effects of indoor fluoride pollution from coal burning in China. Environ Health Perspect 106(5):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, Chen X (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271(1–3):107–116

    Article  CAS  PubMed  Google Scholar 

  • Arif M, Hussain J, Hussain I, Kumar S (2014) Fluoride toxicity and its distribution in groundwater of south east part of Nagaur district, Rajasthan, India. Int J Sci Res Agric Sci 1(6):110–117

    Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487

    Article  CAS  Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpaa M (2011) Fluoride removal from water by adsorption—a review. Chem Eng J 171:811–840

    Article  CAS  Google Scholar 

  • Chaudhary V, Sharma M, Yadav BS (2009) Elevated fluoride in canal catchment soils of northwest Rajasthan, India. Fluoride 42(1):46–49

    CAS  Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RL (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51

    Article  CAS  PubMed  Google Scholar 

  • Elebi OC, Uzum C, Shahwan T, Erten HNA (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767

    Article  Google Scholar 

  • Geng D, Wang H, Yu G (2015) Graphene single crystals: size and morphology engineering. Adv Mater 27(18):2821–2837

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan A, Krishnan R, Thangavel S, Venugopal G, Kim SJ (2015) Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. J Ind Eng Chem 30:14–19

    Article  CAS  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195–214

    Google Scholar 

  • Hough RM, Noble RRP, Reich M (2011) Natural gold nanoparticles. Ore Geol Rev 42(1):55–61

    Article  Google Scholar 

  • Islam M, Patel RK (2011) Thermal activation of basic oxygen furnace slag and valuation of its fluoride removal efficiency. Chem Eng J169:68–77

    Article  Google Scholar 

  • Jahin HS (2014) Fluoride removal from water using nanoscale zero-valent iron (NZVI). Int Water Technol J 4:173–182

    Google Scholar 

  • Johnson DM, Deocampo DM, El-Mayas H, Greipsson S (2015) Induced phytoextraction of lead through chemical manipulation of switchgrass and corn; role of iron supplement. Int J Phytoremediation 17(12):1192–1203

    Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol 86:682–689. https://doi.org/10.1007/s10971-018-4666-2

  • Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B Biointerfaces 73(2):219–223

    Article  CAS  PubMed  Google Scholar 

  • Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Sci Total Environ 39:1291–1298

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    Article  CAS  Google Scholar 

  • Kumari S, Khan S (2017) Defluoridation technology for drinking water and tea by green synthesized Fe3O4/Al2O3 nanoparticles coated polyurethane foams for rural communities. Sci Rep 7:8070–8081

    Article  PubMed  PubMed Central  Google Scholar 

  • Latha N, Gowri M (2014) Biosynthesis and characterisation of Fe3O4 nanoparticles using Caricaya papaya leaves extract. Int J Sci Res 3(11):1551–1556

    Google Scholar 

  • Li XQ, Zhang WX (2006) Iron nanoparticles: the core–shell structure and unique properties for Ni (II) sequestration. Langmuir 22:4638–4642

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zero valent iron nanoparticles, a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem 111:6939–6946

    CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

    Google Scholar 

  • Lingamdinne LP, Koduru JR, Roh H, Choi YL, Chang YY, Yang JK (2016) Adsorption removal of Co (II) from waste-water using graphene oxide. Hydrometallurgy 165:90–96

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Sci Total Environ 39:1338–1345

    Article  CAS  Google Scholar 

  • Matlochová A, Plachá D, Rapantová N (2013) The application of nanoscale materials in groundwater remediation. Pol J Environ Stud 22(5):1401–1410

    Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Sci Total Environ 42(16):5843–5859

    Article  CAS  Google Scholar 

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75

    Article  CAS  Google Scholar 

  • Meenakshi, Maheshwari RC (2006) Fluoride in drinking water and its removal. J Hazard Mater 137:456–463

    Article  CAS  PubMed  Google Scholar 

  • Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SNA (2014) Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomed 9:121

    Article  Google Scholar 

  • Mohan S, Kumar V, Singh DK, Hasan SH (2016) Synthesis and characterization of rGO/ZrO 2 nanocomposite for enhanced removal of fluoride from water: kinetics, isotherm, and thermodynamic modeling and its adsorption mechanism. RSC Adv 6(90):87523–87538

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Ozsvath DL (2006) Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin. Environ Geol 50:132–138

    Article  CAS  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414

    Article  CAS  Google Scholar 

  • Pizzo G, Piscopo MR, Pizzo I, Guiliana G (2007) Community water fluoridation and caries prevention: a critical review. Clin Oral Investig 11:189–193

    Article  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. https://doi.org/10.1155/2014/963961

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer, Cham

    Book  Google Scholar 

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer, Cham

    Book  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed Central  PubMed  Google Scholar 

  • Qian Y, Wang C, Le ZG (2011) Decorating graphene sheets with Pt nanoparticles using sodium citrate as reductant. Appl Surf Sci 257(24):10758–10762

    Article  CAS  Google Scholar 

  • Rashmi G, Akhil S, Kusum G, Afifa Z, Monohar RK (2013) Dental fluorosis status in school children of Jaipur (Raj) India. IOSRJ Dental Med Sci 8:51

    Article  Google Scholar 

  • Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1):145–156

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed 7:5603–5610

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56

    Article  CAS  PubMed  Google Scholar 

  • Swarup D, Dwivedi SK (2002) Environmental pollution and effects of lead and fluoride on animal health. Indian Council of Agricultural Research Krishi Anusandhan Bhavan Pusa, New Delhi

    Google Scholar 

  • Symonds R, Rose W, Reed M (1988) Contribution of Cl and F bearing gases to the atmosphere by volcanoes. Nature 334:415–418

    Article  CAS  Google Scholar 

  • Taherian F, Marcon V, van der Vegt NF, Leroy F (2013) What is the contact angle of water on graphene? Langmuir 29(5):1457–1465

    Article  CAS  PubMed  Google Scholar 

  • US Public Health Service (1962) Drinking water standards. Department of Health Education and Welfare, Washington, DC

    Google Scholar 

  • Uzum C, Shahwan T, Eroglu AE, Hallam TB (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181

    Article  CAS  Google Scholar 

  • Vestergaard P, Jorgensen NR, Schwarz P, Mosekilde L (2008) Effects of treatment with fluoride on bone mineral density and fracture risk—a meta-analysis. Osteoporos Int 19:257–268

    Article  CAS  PubMed  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang J, Ma T, Zhang Z, Zhang X, Jiang Y, Dong D, Zhang P, Li Y (2006) Fluoride in drinking water and its removal. J Hazard Mater 137:972

    Article  CAS  PubMed  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757

    CAS  Google Scholar 

  • Yuan W, Gu Y, Li L (2012) Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci 261:753–758

    Article  CAS  Google Scholar 

  • Zare K, Najafi F, Sadegh H (2013) Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J Nanostruct Chem 3(1):71

    Article  Google Scholar 

  • Zhu HY, Li JY, Zhao JC, Churchman GJ (2005) Photocatalysts prepared from layered clays and titanium hydrate for degradation of organic pollutants in water. Appl Clay Sci 28(1–4):79–88

    Google Scholar 

  • Zhu S, Zhang J, Dong T (2009) Removal of fluorine from contaminated field soil by anolyte enhanced electrokinetic remediation. Environ Earth Sci 59(2):379–384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Human Resource and Development (MHRD), India, for providing financial assistance for the research project “Center for Excellence (CoE)—Water and Energy.” The authors are deeply grateful to Prof. Aditya Shastri for providing research amenities and the Bioinformatics Centre, Banasthali Vidyapith, Rajasthan (India), for use of computational facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Khan, S. (2018). Nanobioremediation: An Innovative Approach to Fluoride (F) Contamination. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_15

Download citation

Publish with us

Policies and ethics