Skip to main content

Functionalisation of Silicones with Polysaccharides

  • Chapter
  • First Online:
  • 277 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

A basic strategies to deal with the above described problems of CAUTI and biofilm formation is aimed toward modification of the implant’s surface-chemical properties, coating with a desired agent, and by manipulation of the surface roughness or morphology which can prevent the attachment of bacteria to the implant [1]. This chapter will be devoted predominantly to coating of silicon-based medical implants. Two strategies are common in coating of medical implants to achieve the above-mentioned goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Vasilev, J. Cook, H.J. Griesser, Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 6, 553–567 (2009). https://doi.org/10.1586/erd.09.36

    Article  Google Scholar 

  2. M. Bračič, Surface Modification of Silicone with Polysaccharides for the Development of Antimicrobial Urethral Catheters (Maribor, 2016)

    Google Scholar 

  3. L.E. Nicolle, The chronic indwelling catheter and urinary infection in long-term-care facility residents. Infect. Control Hosp. Epidemiol. 22, 316–321 (2001). https://doi.org/10.1086/501908

    Article  CAS  Google Scholar 

  4. L. Muzzi-Bjornson, L. Macera, Preventing infection in elders with long-term indwelling urinary catheters. J. Am. Acad. Nurse Pract. 23, 127–134 (2011). https://doi.org/10.1111/j.1745-7599.2010.00588.x

    Article  Google Scholar 

  5. K. Schumm, T.B.L. Lam, Types of urethral catheters for management of short-term voiding problems in hospitalised adults. Cochrane Database Syst. Rev. 110–121 (2008). https://doi.org/10.1002/14651858.cd004013.pub3

  6. Y. Sh, L. Ys, L. Fh, Y. Jm, C. Ks, Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J. Biomed. Mater. Res. B Appl. Biomater. 83, 340–344 (2007). https://doi.org/10.1002/jbmb

    Article  Google Scholar 

  7. E.L. Lawrence, I.G. Turner, Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys. 27, 443–453 (2005). https://doi.org/10.1016/j.medengphy.2004.12.013

    Article  CAS  Google Scholar 

  8. K. Efimenko, W.E. Wallace, J. Genzer, Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306–315 (2002). https://doi.org/10.1006/jcis.2002.8594

    Article  CAS  Google Scholar 

  9. J. Roth, V. Albrecht, M. Nitschke, C. Bellmann, F. Simons, S. Zschoche, S. Michel, C. Luhmann, K. Grundke, B. Voit, Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24, 12603–12611 (2008). https://doi.org/10.1021/la801970s

    Article  CAS  Google Scholar 

  10. S. Hemmilä, J.V. Cauich-Rodríguez, J. Kreutzer, P. Kallio, Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces. Appl. Surf. Sci. 258, 9864–9875 (2012). https://doi.org/10.1016/j.apsusc.2012.06.044

    Article  CAS  Google Scholar 

  11. K. Haji, Y. Zhu, M. Otsubo, C. Honda, Surface modification of silicone rubber after corona exposure. Plasma Process. Polym. 4, 1075–1080 (2007). https://doi.org/10.1002/ppap.200732408

    Article  Google Scholar 

  12. A.I. Lopez, A. Kumar, M.R. Planas, Y. Li, T.V. Nguyen, C. Cai, Biofunctionalization of silicone polymers using poly(amidoamine) dendrimers and a mannose derivative for prolonged interference against pathogen colonization. Biomaterials 32, 4336–4346 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.056

    Article  CAS  Google Scholar 

  13. C. Clec’h, C. Schwebel, A. Français, D. Toledano, J.-P. Fosse, M. Garrouste-Orgeas, E. Azoulay, C. Adrie, S. Jamali, A. Descorps-Declere, D. Nakache, J.-F. Timsit, Y. Cohen, Does catheter-associated urinary tract infection increase mortality in critically ill patients? Infect. Control Hosp. Epidemiol. 28, 1367–1373 (2007). https://doi.org/10.1086/523279

    Article  Google Scholar 

  14. M. Bračič, L. Fras-Zemljič, L. Pérez, K. Kogej, K. Stana-Kleinschek, R. Kargl, T. Mohan, Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. J. Mater. Chem. B. 5, 3888–3897 (2017). https://doi.org/10.1039/C7TB00311K

    Article  Google Scholar 

  15. S. Bauer, M.P. Arpa-Sancet, J.A. Finlay, M.E. Callow, J.A. Callow, A. Rosenhahn, Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir 29, 4039–4047 (2013). https://doi.org/10.1021/la3038022

    Article  CAS  Google Scholar 

  16. J. Zhou, J. Yuan, X. Zang, J. Shen, S. Lin, Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids Surf. B Biointerfaces 41, 55–62 (2005). https://doi.org/10.1016/j.colsurfb.2004.11.006

    Article  CAS  Google Scholar 

  17. M. Li, K.G. Neoh, L.Q. Xu, R. Wang, E.T. Kang, T. Lau, D.P. Olszyna, E. Chiong, Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 28, 16408–16422 (2012). https://doi.org/10.1021/la303438t

    Article  CAS  Google Scholar 

  18. A. Oláh, H. Hillborg, G.J. Vancso, Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl. Surf. Sci. 239, 410–423 (2005). https://doi.org/10.1016/j.apsusc.2004.06.005

    Article  CAS  Google Scholar 

  19. E.P.T. De Givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier, S. Géribaldi, F. Guittard, Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers. Langmuir 25, 6448–6453 (2009). https://doi.org/10.1021/la900064m

    Article  CAS  Google Scholar 

  20. D. Maji, S.K. Lahiri, S. Das, Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf. Interface Anal. 44, 62–69 (2012). https://doi.org/10.1002/sia.3770

    Article  CAS  Google Scholar 

  21. L.F. Zemljiĉ, Z. Perŝin, P. Stenius, Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10, 1181–1187 (2009). https://doi.org/10.1021/bm801483s

    Article  CAS  Google Scholar 

  22. J.L. Fritz, M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. J. Adhes. 54, 33–45 (1995). https://doi.org/10.1080/00218469508014379

    Article  CAS  Google Scholar 

  23. M. Bracic, T. Mohan, R. Kargl, T. Griesser, S. Hribernik, S. Kostler, K. Stana-Kleinschek, L. Fras-Zemljic, Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Adv. 4, 11955–11961 (2014). https://doi.org/10.1039/c3ra47380e

    Article  CAS  Google Scholar 

  24. D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators, B Chem. 114, 170–172 (2006). https://doi.org/10.1016/j.snb.2005.04.037

    Article  CAS  Google Scholar 

  25. S. Béfahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand, S. Yunus, Thickness and elastic modulus of plasma treated PDMS silica-like surface layer. Langmuir 26, 3372–3375 (2010). https://doi.org/10.1021/la903154y

    Article  CAS  Google Scholar 

  26. U.-S. Ha, Y.-H. Cho, Catheter-associated urinary tract infections: new aspects of novel urinary catheters. Int. J. Antimicrob. Agents 28, 485–490 (2006). https://doi.org/10.1016/j.ijantimicag.2006.08.020

    Article  CAS  Google Scholar 

  27. R.O. Darouiche, H. Safar, I.I. Raad, In vitro efficacy of antimicrobial-coated bladder catheters in inhibiting bacterial migration along catheter surface. J. Infect. Dis. 176, 1109–1112 (1997)

    Article  CAS  Google Scholar 

  28. D. Kowalczuk, G. Ginalska, A. Przekora, The cytotoxicity assessment of the novel latex urinary catheter with prolonged antimicrobial activity. J. Biomed. Mater. Res., Part A 98 A, 222–228 (2011). https://doi.org/10.1002/jbm.a.33110

    Article  CAS  Google Scholar 

  29. R. Platt, B.F. Polk, B. Murdock, B. Rosner, Prevention of catheter-associated urinary tract infection: a cost-benefit analysis. Infect. Control Hosp. Epidemiol. 10, 60–64 (2011)

    Article  Google Scholar 

  30. T.A. Gaonkar, L. Caraos, S. Modak, Efficacy of a silicone urinary catheter impregnated with chlorhexidine and triclosan against colonization with Proteus mirabilis and other uropathogens. Infect. Control Hosp. Epidemiol. 28, 596–598 (2007). https://doi.org/10.1086/513449

    Article  Google Scholar 

  31. O. Girshevitz, Y. Nitzan, C.N. Sukenik, Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating. Chem. Mater. 20, 1390–1396 (2008). https://doi.org/10.1021/cm702209r

    Article  CAS  Google Scholar 

  32. Y. Liu, C. Leng, B. Chisholm, S. Stafslien, P. Majumdar, Z. Chen, Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. Langmuir 29, 2897–2905 (2013). https://doi.org/10.1021/la304571u

    Article  CAS  Google Scholar 

  33. M.M. Gabriel, M.S. Mayo, L.L. May, R.B. Simmons, D.G. Ahearn, In vitro evaluation of the efficacy of a silver-coated catheter. Curr. Microbiol. 33, 1–5 (1996). https://doi.org/10.1007/s002849900064

    Article  CAS  Google Scholar 

  34. J. Johnson, P. Roberts, R. Olsen, K. Moyer, W. Stamm, Prevention of catheter associated urinary tract infections with a silver oxide coated urinary catheter: clinical and microbiologic correlates. J. Infect. Dis. 162, 1145–1150 (1990)

    Article  CAS  Google Scholar 

  35. H. Kumon, H. Hashimoto, M. Nishimura, K. Monden, N. Ono, Catheter-associated urinary tract infections: impact of catheter materials on their management. Int. J. Antimicrob. Agents 17, 311–316 (2001). https://doi.org/10.1016/S0924-8579(00)00360-5

    Article  CAS  Google Scholar 

  36. M. Chung, C. Chin-Chen, Catheter inner surface metal coating by sputteringwith microplasma, in IEEE 35th International Conference on Plasma Science 2008. ICOPS 2008 (2008), p. 1

    Google Scholar 

  37. C.Y. Tang, D. zhu Chen, K.Y.Y. Chan, K.M. Chu, P.C. Ng, T.M. Yue, Fabrication of antibacterial silicone composite by an antibacterial agent deposition, solution casting and crosslinking technique. Polym. Int. 60, 1461–1466 (2011). https://doi.org/10.1002/pi.3102

    Article  CAS  Google Scholar 

  38. P. AshaRani, M.P. Hande, S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 10, 65 (2009). https://doi.org/10.1186/1471-2121-10-65

    Article  CAS  Google Scholar 

  39. L. Braydich-Stolle, S. Hussain, J.J. Schlager, M.C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412–419 (2005). https://doi.org/10.1093/toxsci/kfi256

    Article  CAS  Google Scholar 

  40. X. Yang, A.P. Gondikas, S.M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J.N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans. Environ. Sci. Technol. 46, 1119–1127 (2012). https://doi.org/10.1021/es202417t

    Article  CAS  Google Scholar 

  41. D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, D.B. Barbosa, The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 34, 103–110 (2009). https://doi.org/10.1016/j.ijantimicag.2009.01.017

    Article  CAS  Google Scholar 

  42. W. Zhang, J. Ji, Y. Zhang, Q. Yan, E.Z. Kurmaev, A. Moewes, J. Zhao, P.K. Chu, Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Appl. Surf. Sci. 253, 8981–8985 (2007). https://doi.org/10.1016/j.apsusc.2007.05.019

    Article  CAS  Google Scholar 

  43. D.E. Heskett, Antimicrobial Urinary Catheter (2000)

    Google Scholar 

  44. J.H.H. Bongaerts, J.J. Cooper-White, J.R. Stokes, Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients. Biomacromolecules 10, 1287–1294 (2009). https://doi.org/10.1021/bm801079a

    Article  CAS  Google Scholar 

  45. L. Medda, M.F. Casula, M. Monduzzi, A. Salis, Adsorption of lysozyme on hyaluronic acid functionalized SBA-15 mesoporous silica: a possible bioadhesive depot system. Langmuir 30, 12996–13004 (2014). https://doi.org/10.1021/la503224n

    Article  CAS  Google Scholar 

  46. B. Polanič, Površinska obdelava silikonskega materiala (Maribor, 2016)

    Google Scholar 

  47. T.I. Croll, A.J. O’Connor, G.W. Stevens, J.J. Cooper-White, A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7, 1610–1622 (2006). https://doi.org/10.1021/bm060044l

    Article  CAS  Google Scholar 

  48. A. Mannan, S.J. Pawar, Anti-infective coating of gentamicin sulphate encapsulated PEG/PVA/chitosan for prevention of biofilm formation. Int. J. Pharm. Pharm. Sci. 6, 571–576 (2014)

    Google Scholar 

  49. D. Kowalczuk, A. Przekora, G. Ginalska, Biological safety evaluation of the modified urinary catheter. Mater. Sci. Eng., C 49, 274–280 (2015). https://doi.org/10.1016/j.msec.2015.01.001

    Article  CAS  Google Scholar 

  50. R. Wang, K.G. Neoh, Z. Shi, E.T. Kang, P.A. Tambyah, E. Chiong, Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol. Bioeng. 109, 336–345 (2012). https://doi.org/10.1002/bit.23342

    Article  CAS  Google Scholar 

  51. Y. Tan, F. Han, S. Ma, W. Yu, Carboxymethyl chitosan prevents formation of broad-spectrum biofilm. Carbohydr. Polym. 84, 1365–1370 (2011). https://doi.org/10.1016/j.carbpol.2011.01.036

    Article  CAS  Google Scholar 

  52. M. Bračič, T. Mohan, T. Griesser, K. Stana-Kleinschek, S. Strnad, L. Fras-Zemljič, One-step noncovalent surface functionalization of PDMS with chitosan-based bioparticles and their protein-repellent properties. Adv. Mater. Interfaces. 4, 1–11 (2017). https://doi.org/10.1002/admi.201700416

    Article  CAS  Google Scholar 

  53. J.G. Alauzun, S. Young, R. D’Souza, L. Liu, M.A. Brook, H.D. Sheardown, Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials 31, 3471–3478 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.069

    Article  CAS  Google Scholar 

  54. X. Cao, M.E. Pettit, S.L. Conlan, W. Wagner, A.D. Ho, A.S. Clare, J.A. Callow, M.E. Callow, M. Grunze, A. Rosenhahn, Resistance of polysaccharide coatings to proteins, hematopoietic cells, and marine organisms. Biomacromol 10, 907–915 (2009). https://doi.org/10.1021/bm8014208

    Article  CAS  Google Scholar 

  55. K.R. Patel, H. Tang, W.E. Grever, K.Y. Simon Ng, J. Xiang, R.F. Keep, T. Cao, J.P. McAllister, Evaluation of polymer and self-assembled monolayer-coated silicone surfaces to reduce neural cell growth. Biomaterials 27, 1519–1526 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.009

    Article  CAS  Google Scholar 

  56. I. Wong, C.M. Ho, Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 7, 291–306 (2009). https://doi.org/10.1007/s10404-009-0443-4.Surface

    Article  CAS  Google Scholar 

  57. Z. Yue, X. Liu, P.J. Molino, G.G. Wallace, Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid—collagen conjugate for neural interfacing. Biomaterials 32, 4714–4724 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.032

    Article  CAS  Google Scholar 

  58. A. Francesko, M.M. Fernandes, K. Ivanova, S. Amorim, R.L. Reis, I. Pashkuleva, E. Mendoza, A. Pfeifer, T. Heinze, T. Tzanov, Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater. 33, 203–212 (2016). https://doi.org/10.1016/j.actbio.2016.01.020

    Article  CAS  Google Scholar 

  59. A. Colomer, A. Pinazo, M.A. Manresa, M.P. Vinardell, M. Mitjans, M.R. Infante, L. Pérez, Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities. J. Med. Chem. 54, 989–1002 (2011). https://doi.org/10.1021/jm101315k

    Article  CAS  Google Scholar 

  60. J. Merta, P. Stenius, Interactions between cationic starch and anionic surfactants. Colloid Polym. Sci. 273, 974–983 (1995). https://doi.org/10.1007/BF00660376

    Article  CAS  Google Scholar 

  61. K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution, 2nd edn. (Wiley, West Sussex, 2003). https://doi.org/10.1002/0470856424

  62. K. Thalberg, B. Lindman, Interaction between hyaluronan and cationic surfactants. J. Phys. Chem. 93, 1478–1483 (1989). https://doi.org/10.1021/j100341a058

    Article  CAS  Google Scholar 

  63. M. Bračič, P. Hansson, L. Pérez, L.F. Zemljič, K. Kogej, Interaction of sodium hyaluronate with a biocompatible cationic surfactant from lysine: a binding study. Langmuir 31, 12043–12053 (2015). https://doi.org/10.1021/acs.langmuir.5b03548

    Article  CAS  Google Scholar 

  64. M.M. Fernandes, K. Ivanova, A. Francesko, E. Mendoza, T. Tzanov, Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochem. 59, 116–122 (2017). https://doi.org/10.1016/j.procbio.2016.09.011

    Article  CAS  Google Scholar 

  65. M. Bračič, O. Šauperl, S. Strnad, I. Kosalec, L. Fras Zemljič, Surface modification of silicone with colloidal polysaccharides formulations for the development of antimicrobial urethral catheters. Appl. Surf. Sci. Submitted (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Bračič .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bračič, M., Strnad, S., Fras Zemljič, L. (2018). Functionalisation of Silicones with Polysaccharides. In: Bioactive Functionalisation of Silicones with Polysaccharides. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-02275-4_4

Download citation

Publish with us

Policies and ethics