Skip to main content

Impulsive Control Problems with Mixed Constraints

  • Chapter
  • First Online:
Optimal Impulsive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 477))

  • 395 Accesses

Abstract

In this chapter, two directions for investigation are combined. On the one hand, mixed constraints are added to the formulation of the problem, that is, joint constraints on the state variable and on the control variable. Such constraints are in demand in engineering applications. On the other hand, a new and broader impulsive extension concept is considered, as it is assumed that the matrix-multiplier G may now depend on both the state variable x and the control of the conventional type u. This leads to a new, more general type of impulsive control which can be found in various engineering applications, for example, those in which rapid variations in the mass distribution of a mechanical system need to be taken into account for the small time interval when the impulse takes place. A corresponding model example of such a control system equipped with the mixed constraints is given in Sect. 6.2. Further on in this chapter, the maximum principle is proved which requires some effort and auxiliary techniques contained in Sect. 6.4. The chapter ends with ten exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature, the modulus of surjection is introduced for set-valued maps \(F:X\rightarrow 2^Y\). If spaces X and Y are finite dimensional, then

    $$ \text {sur}F(x|y)=\inf \{|x^*|:\, x^*\in D^*F(x,y)(y^*),\, |y^*|=1\}. $$

    Here, \(D^*F(x,y)\) is the limiting coderivative of F at (xy), [16]. By definition, \(\text {sur}F(x|y)=\infty \) if \(y\notin F(x)\). If we set \(F(\cdot ):=r(x,\cdot ,t)-C\), then \(\text {sur}M(x,u,t)=\text {sur}F(x,u,t|0)\).

  2. 2.

    When \(\alpha \rightarrow L\), the number c approaches the number \(\displaystyle {\text {sur}M(x_*|y_*)}^{-1}\) which is called the modulus of regularity and designated by \(\text {reg}M(x_*|y_*)\). It follows that the modulus of regularity is the lower bound of all such c, for which the estimate of metric regularity still holds true; see [16].

References

  1. Arutyunov, A.: Perturbations of extremal problems with constraints and necessary optimality conditions. J. Sov. Math. 54(6), 1342–1400 (1991)

    Article  Google Scholar 

  2. Arutyunov, A., Karamzin, D.: Necessary conditions for a weak minimum in an optimal control problem with mixed constraints. Differ. Equ. 41(11), 1532–1543 (2005)

    Article  MathSciNet  Google Scholar 

  3. Arutyunov, A., Karamzin, D., Pereira, F.: Maximum principle in problems with mixed constraints under weak assumptions of regularity. Optimization 59(7), 1067–1083 (2010)

    Article  MathSciNet  Google Scholar 

  4. Arutyunov, A., Karamzin, D., Pereira, F., Silva, G.: Investigation of regularity conditions in optimal control problems with geometric mixed constraints. Optimization 65(1), 185–206 (2016)

    Article  MathSciNet  Google Scholar 

  5. Arutyunov, A., Zhukovskiy, S.: Local solvability of control systems with mixed constraints. Differ. Equ. 46(11), 1561–1570 (2010)

    Article  MathSciNet  Google Scholar 

  6. Arutyunov, A.V.: Optimality conditions. Abnormal and degenerate problems. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  7. Clarke, F., De Pinho, M.: Optimal control problems with mixed constraints. SIAM J. Control Optim. 48(7), 4500–4524 (2010)

    Article  MathSciNet  Google Scholar 

  8. Devdariani, E., Ledyaev, Y.: Maximum principle for implicit control systems. Appl. Math. Optim. 40(1), 79–103 (1999)

    Article  MathSciNet  Google Scholar 

  9. Dubovitskii, A., Milyutin, A.: Necessary conditions for a weak extremum in optimal control problems with mixed constraints of the inequality type. USSR Comput. Math. Math. Phys. 8(4), 24–98 (1968)

    Article  MathSciNet  Google Scholar 

  10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  11. Filippov, A.: On certain problems of optimal regulation. Bulletin of Moscow State University. Ser. Math. Mech. (2), 25–38 (1959)

    Google Scholar 

  12. Hestenes, M.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  13. Makowski, K., Neustadt, L.: Optimal control problems with mixed control-phase variable equality and inequality constraints. SIAM J. Control 12(2), 184–228 (1974)

    Article  MathSciNet  Google Scholar 

  14. Milyutin, A.: Maximum Principle for General Optimal Control Problem. Fizmatlit, Moscow (2001). [in Russian]

    Google Scholar 

  15. Mordukhovich, B.: Maximum principle in the problem of time optimal response with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)

    Article  MathSciNet  Google Scholar 

  16. Mordukhovich, B.: Variational analysis and generalized differentiation I. Basic Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

    Google Scholar 

  17. Mordukhovich, B.: Variational analysis and generalized differentiation II. Applications, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 331. Springer, Berlin (2006)

    Google Scholar 

  18. Neustadt, L.: Optimization. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  19. Páles, Z., Zeidan, V.: Strong Local Optimality Conditions for Control Problems with Mixed State-Control Constraints, pp. 4738–4743 (2002)

    Google Scholar 

  20. de Pinho, M., Loewen, P., Silva, G.: A weak maximum principle for optimal control problems with nonsmooth mixed constraints. Set-Valued Var. Anal. 17(2), 203–221 (2009)

    Article  MathSciNet  Google Scholar 

  21. de Pinho, M., Vinter, R.: Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl. 212(2), 493–516 (1997)

    Article  MathSciNet  Google Scholar 

  22. de Pinho, M., Vinter, R., Zheng, H.: A maximum principle for optimal control problems with mixed constraints. IMA J. Math. Control Inf. 18(2), 189–205 (2001)

    Article  MathSciNet  Google Scholar 

  23. Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: Mathematical theory of optimal processes. In: Neustadt, L.W. (ed.) Translate from the Russian, 1st edn. Interscience Publishers, Wiley (1962)

    Google Scholar 

  24. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1(2), 130–143 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Karamzin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arutyunov, A., Karamzin, D., Lobo Pereira, F. (2019). Impulsive Control Problems with Mixed Constraints. In: Optimal Impulsive Control. Lecture Notes in Control and Information Sciences, vol 477. Springer, Cham. https://doi.org/10.1007/978-3-030-02260-0_6

Download citation

Publish with us

Policies and ethics