Skip to main content

Determination of Previous Austenite Grain Size 9%Ni Low Carbon Steel and Its Effect on Impact Toughness at −196 °C

  • Chapter
  • First Online:
Book cover Materials Design and Applications II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 98))

  • 759 Accesses

Abstract

Low carbon steel with 9%Ni is used in cryogenic services, in which high toughness and strength are required. One of the main concepts of physical metallurgy is that the toughness and strength may be increased by grain refinement. In martensitic steels, the grain size that can be measured is the previous austenite grain size (PAGS). The goal of this work is to reveal and measure the PAGS’s of different specimens of 9%Ni low carbon steel and correlate these results with hardness and low temperature toughness. The decrease of PAGS’s improve the toughness of specimens quenched and quenched and tempered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lan, H.F., Du, L.X., Li, Q., Qiu, C.L., Misra, R.D.K.: Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size. J. Alloy. Compd. 710, 702–710 (2017)

    Article  CAS  Google Scholar 

  2. Kang, J., Li, C., Yuan, G., Wang, G.: Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture. Mater. Lett. 175, 157–160 (2016)

    Article  CAS  Google Scholar 

  3. Srivatsa, K., Srinivas, P., Balachandran, G., Balasubramanian, V.: Improvement of impact toughness by modified hot working and heat treatment in 13% Cr martensitic stainless steel. Mater. Sci. Eng. 677, 240–251 (2016)

    Article  CAS  Google Scholar 

  4. Calcagnotto, M., Ponge, D., Raabe, D.: Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels. Mater. Sci. Eng. A 527, 7832–7840 (2010)

    Article  Google Scholar 

  5. Ming, L., Wang, Q., Wang. H., Zhang C., Guo, A.: A remarkable role of niobium precipitation in refining microstructure and improving toughness of A QT-treated 20CrMo47NbV steel with ultrahigh strength. Mater. Sci. Eng. 613, 240–259 (2014)

    Google Scholar 

  6. Sinha, P.P., Sreekumar, K., Babu, N.S., Pant, B., Natarajan, A., Nagarajan, K.V.: Development of heat treatment parameters to improve fracture toughness and grain size of an embrittled maraging steel. J. Heat Treat. 9, 125–131 (1992)

    Google Scholar 

  7. Tavares, S.S.M., Pardal, J.M., Martins, T.R.B., Schmitt, V.M., Szlejf, J.F.V.: Influence of austenitizing on the mechanical properties of maraging 300 and SAE 4340 steels—comparative study. Mater. Res. 20(2) (2017)

    Google Scholar 

  8. ASTM A-333-15: Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness. ASTM International, West Conshohocken, PA, USA (2015)

    Google Scholar 

  9. Wang, Y., Zhang, K., Guo, Z., Chen, N., Rong, Y.: A new effect of retained austenite on ductility enhancement in high strength bainitic steel. Mater. Sci. Eng. 552, 288–295 (2012)

    Article  CAS  Google Scholar 

  10. Ahsan, Q., Haseeb, A.S.M.A., Hussein, N.I.S.B.H., Chang, S.Y.: 9% Nickel steels and their welding behavior. Compr. Mater. Process. 6, 135–149 (2014)

    Article  Google Scholar 

  11. Rasband, W.S.: ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA (1997–2016). https://imagej.nih.gov/ij/

  12. ASTM E112-13: Standard Test Methods for Determining Average Grain Size. ASTM International, West Conshohocken, PA (2013)

    Google Scholar 

  13. Ajus, C., Tavares, S.S.M., Silva, M.R., Corte, R.R.A.: Magnetic properties and retained austenite quantification in SAE 4340 steel. Rev. Matér. 14, 993–999 (2009)

    CAS  Google Scholar 

  14. Cao, R., Feng, W., Peng, Y., Du, W.S., Tian, Z.L., Chen, J.H.: Investigation of abnormal high impact toughness in simulated welding CGHAZ of a 8%Ni 980 MPa high strength steel. Mater. Sci. Eng. A 528, 631–642 (2010)

    Article  Google Scholar 

  15. Kim, K.J., Schwartz, L.H.: On the effects of intercritical tempering on the impact energy of Fe-9Ni-0.1C. Mater. Sci. Eng. 33, 5–20 (1978)

    Google Scholar 

  16. Tavares, S.S.M., Rodrigues, C.R., Oliveira, C.A.S., Woyames, C.B., Dille, J.: Influence of heat treatments on microstructure and toughness of 9%Ni steel. J. Mater. Eng. Perform. 27, 1530–1536 (2018)

    Article  CAS  Google Scholar 

  17. Voort, G.F.V.: Revealing prior-austenite grain boundaries. Microsc. Microanal. 16(2) (2010)

    Google Scholar 

Download references

Acknowledgements

This work was conducted during a scholarship supported by the International Cooperation Program CAPES at the CEFET/RJ. Financed by CAPES—Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel P. C. da Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavares, S.S.M., da Cunha, R.P.C., Barbosa, C., Silva, M.R., Vinhosa, R.A. (2019). Determination of Previous Austenite Grain Size 9%Ni Low Carbon Steel and Its Effect on Impact Toughness at −196 °C. In: Silva, L. (eds) Materials Design and Applications II. Advanced Structured Materials, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-02257-0_3

Download citation

Publish with us

Policies and ethics