Skip to main content

Role of Chaperone Mediated Autophagy in Viral Infections

  • Chapter
  • First Online:
Chaperokine Activity of Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 16))

  • 340 Accesses

Abstract

Chaperone-mediated autophagy (CMA) is a selective mechanism for degradation of soluble cytosolic proteins is responsible for the timed degradation of 30% of cytosolic proteins under conditions of prolonged nutrient deprivation and stress. Molecular chaperones in the lysosomal lumen and in the cytosol and induce this proteolytic pathway. A central molecule for CMA is a receptor in the lysosomal membrane is known as the lysosome-associated membrane protein (LAMP) type 2A. The decrease in CMA leads to cells to be more prone to oxidative stresses and pathogenes. Furthermore, the decreased CMA in aging is stem from reduced LAMP-2A in the lysosomal membrane. Here, we describe the evidence in support of the contribution of chaperokines and CMA in viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHIP:

Hsc70-interacting protein

CMA:

Chaperone-mediated autophagy

HCV:

Hepatitis C virus

HSP:

Heat shock proteins

IFNLR1:

Interferon α receptor 1

LAMP-2A:

Lysosome-Associated Membrane Protein type 2A

PERK:

PKR-like ER kinase

UPR:

Unfolded protein response

VSV:

Vesicular stomatitis virus

References

  • Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114(13):2491–2499

    CAS  PubMed  Google Scholar 

  • Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137(4):825–834

    Article  CAS  Google Scholar 

  • Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28(18):5747–5763

    Article  CAS  Google Scholar 

  • Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713

    Article  CAS  Google Scholar 

  • Brehme M, Voisine C (2016) Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis Model Mech 9(8):823–838

    Article  CAS  Google Scholar 

  • Chandra PK, Bao L, Song K, Aboulnasr FM, Baker DP, Shores N, Wimley WC, Liu S, Hagedorn CH, Fuchs SY (2014) HCV infection selectively impairs type I but not type III IFN signaling. Am J Pathol 184(1):214–229

    Article  CAS  Google Scholar 

  • Chiang H, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263(14):6797–6805

    CAS  PubMed  Google Scholar 

  • Chiang H-L, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodaton heat shock protein in lysosomal degradation of intracellular proteins. Science 246(4928):382

    Article  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  Google Scholar 

  • Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A (2016) The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int J Biochem Cell Biol 79:403–418

    Article  CAS  Google Scholar 

  • Crotzer VL, Glosson N, Zhou D, Nishino I, Blum JS (2010) LAMP-2-deficient human B cells exhibit altered MHC class II presentation of exogenous antigens. Immunology 131(3):318–330

    Article  CAS  Google Scholar 

  • Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21(3):142–150

    Article  CAS  Google Scholar 

  • Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501

    Article  CAS  Google Scholar 

  • Cuervo A, Knecht E, Terlecky SR, Dice JF (1995) Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Phys Cell Phys 269(5):C1200–C1208

    Article  CAS  Google Scholar 

  • Dash S, Chava S, Aydin Y, Chandra PK, Ferraris P, Chen W, Balart LA, Wu T, Garry RF (2016) Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic ER-stress response. Viruses 8(5):150

    Article  Google Scholar 

  • de Duve C (1963) Ciba foundation symposium on lysosomes (de Reuck AVS, Cameron MP, eds). JA Churchill Ltd., London

    Google Scholar 

  • Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    Article  CAS  Google Scholar 

  • Dice J, Chiang H, Spencer E, Backer J (1986) Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem 261(15):6853–6859

    CAS  PubMed  Google Scholar 

  • Feizi N, Mehrbod P, Romani B, Soleimanjahi H, Bamdad T, Feizi A, Jazaeri EO, Targhi HS, Saleh M, Jamali A (2017) Autophagy induction regulates influenza virus replication in a time-dependent manner. J Med Microbiol 66(4):536–541

    Article  Google Scholar 

  • Finn PF, Dice JF (2005) Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem 280(27):25864–25870

    Article  CAS  Google Scholar 

  • Gough NR, Hatem CL, Fambrough DM (1995) The family of LAMP-2 proteins arises by alternative splicing from a single gene: characterization of the avian LAMP-2 gene and identification of mammalian homologs of LAMP-2b and LAMP-2c. DNA Cell Biol 14(10):863–867

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571

    Article  CAS  Google Scholar 

  • Kettern N, Rogon C, Limmer A, Schild H, Höhfeld J (2011) The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. PLoS One 6(1):e16398

    Article  CAS  Google Scholar 

  • Khateri M, Abdoli A, Motevalli F, Fotouhi F, Bolhassani A, Arashkia A, Jazaeri EO, Shahbazi S, Mehrbod P, Naziri H (2018) Evaluation of autophagy induction on HEV 239 vaccine immune response in a mouse model. IUBMB Life 70:207–214

    Article  CAS  Google Scholar 

  • Kurt R, Chandra PK, Aboulnasr F, Panigrahi R, Ferraris P, Aydin Y, Reiss K, Wu T, Balart LA, Dash S (2015) Chaperone-mediated autophagy targets IFNAR1 for lysosomal degradation in free fatty acid treated HCV cell culture. PLoS One 10(5):e0125962

    Article  Google Scholar 

  • Liu J, HuangFu W-C, Kumar KS, Qian J, Casey JP, Hamanaka RB, Grigoriadou C, Aldabe R, Diehl JA, Fuchs SY (2009) Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor. Cell Host Microbe 5(1):72–83

    Article  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  CAS  Google Scholar 

  • Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275(35):27447–27456

    CAS  PubMed  Google Scholar 

  • Slavotinek AM, Biesecker LG (2001) Unfolding the role of chaperones and chaperonins in human disease. Trends Genet 17(9):528–535

    Article  CAS  Google Scholar 

  • Taji F, Kouchesfahani HM, Sheikholeslami F, Romani B, Baesi K, Vahabpour R, Edalati M, Teimoori-Toolabi L, Jazaeri EO, Abdoli A (2017) Autophagy induction reduces telomerase activity in HeLa cells. Mech Ageing Dev 163:40–45

    Article  CAS  Google Scholar 

  • Wang D-w, Peng Z-j, Ren G-f, Wang G-x (2015) The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 6(35):37098

    PubMed  PubMed Central  Google Scholar 

  • Waris G, Tardif KD, Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-κB and STAT-3. Biochem Pharmacol 64(10):1425–1430

    Article  CAS  Google Scholar 

  • Welihinda AA, Tirasophon W, Kaufman RJ (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 7(4–5):293–300

    CAS  PubMed  Google Scholar 

  • Willis MS, Patterson C (2010) Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation 122(17):1740–1751

    Article  Google Scholar 

  • Wondrak GT (2015) Stress response pathways in cancer. Springer, Netherlands

    Book  Google Scholar 

  • Yan MM, Ni JD, Song D, Ding M, Huang J (2015) Interplay between unfolded protein response and autophagy promotes tumor drug resistance. Oncol Lett 10(4):1959–1969

    Article  CAS  Google Scholar 

  • Zhou D, Li P, Lin Y, Lott JM, Hislop AD, Canaday DH, Brutkiewicz RR, Blum JS (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22(5):571–581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of virology department of Tarbiat Modares University and Hepatitis and AIDS department of Pasteur Institute for kind assistant and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoorieh Soleimanjahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soleimanjahi, H., Abdoli, A. (2019). Role of Chaperone Mediated Autophagy in Viral Infections. In: Asea, A., Kaur, P. (eds) Chaperokine Activity of Heat Shock Proteins . Heat Shock Proteins, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-02254-9_7

Download citation

Publish with us

Policies and ethics