Skip to main content

Role of Heat Shock Protein 90 in Autoimmune Inflammatory Rheumatic Diseases

  • Chapter
  • First Online:
Chaperokine Activity of Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 16))

Abstract

Hsp90 is the most studied member of the heat shock proteins family (HSP), which are characterized by induction by increased temperature and various other types of stress. It is a highly conserved molecular chaperone that plays a significant role in many cellular processes. Hsp90 is required for the proper conformation and activation of a number of client cellular proteins, including protein kinases, transcription factors and steroid receptors that play an important role in signal transduction. It also regulates activation of innate immunity, antigen presentation, and the induction of proinflammatory cytokines and chemokines by macrophages and dendritic cells. These properties predispose Hsp90 to a potential role in the pathogenesis of autoimmune inflammatory rheumatic diseases. This article provides an overview of the available knowledge about the potential role of Hsp90 in currently studied rheumatic diseases as a promising candidate for targeted therapy or biomarker of disease activity and severity or a predictor of therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-DMAG:

17-dimethylaminoethylamino-17-demethoxygeldanamycin

AAV:

Adeno-associated virus

APC:

Antigen presenting cells

AS:

Ankylosing spondylitis

ATP:

Adenosine triphosphate

CD:

Cluster of differentiation

Cdc37:

Cell division cycle 37

CK2:

Casein kinase 2

CRP:

C-reactive protein

DAMP:

Danger activated molecular pattern

DAS-28:

Disease activity score-28

DC:

Dendritic cell

DM:

Dermatomyositis

ERK:

Extracellular signal-regulated kinase

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HLA-B27:

Human leukocyte antigen B27

HSP:

Heat shock protein family

Hsp:

Heat shock proteins

IBM:

Inclusion body myositis

ICAM-1:

Intracellular adhesion molecule-1

Ig:

Immunoglobulin

IIM:

Idiopathic inflammatory myopathies

IKK:

I-κB kinase

IL:

Interleukin

ILD:

Interstitial lung disease

IMNM:

Immune-mediated necrotizing myopathy

iNOS:

Inducible nitric oxide synthase

kDa:

KiloDalton

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein-1

MHC:

Major histocompatibility complex

MIP-1:

Macrophage inflammatory protein-1

MyoD:

Myogenic regulatory protein

NF-κB:

Nucelar factor κB

NK:

Natural killer cells

nr-axSpA:

Non-radiographic axial spondyloarthritis

OA:

Osteoarthritis

p23:

Prostaglandin E synthase 3

PBMC:

Peripheral blood mononuclear cells

PM:

Polymyositis

PRR:

Pattern recognition receptors

PsA:

Psoriatic arthritis

RA:

Rheumatoid arthritis

RANTES:

Regulated on activation, normal T cell expressed and secreted

SLE:

Systemic lupus erythematosus

SpA:

Spondyloarthritis

SS:

Sjögren’s syndrome

SSc:

Systemic sclerosis

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TRAP1:

TNF receptor-associated protein 1

TβRI:

TGF-β type I receptor

VCAM-1:

Vascular cell adhesion molecule

References

  • Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9:25–33

    PubMed  PubMed Central  Google Scholar 

  • Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Baré O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70. J Biol Chem 277(17):15028–15034

    Article  CAS  PubMed  Google Scholar 

  • BÃ¥rdsen K, Nilsen MM, Kvaløy JT, Norheim KB, Jonsson G, Omdal R (2016) Heat shock proteins and chronic fatigue in primary Sjögren’s syndrome. Innate Immun 22(3):162–167

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12(11):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Becker T, Hartl F-U, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158(7):1277–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer C, Distler JHW (2013) Tyrosine kinase signaling in fibrotic disorders. Biochim Biophys Acta (BBA) Mol Basis Dis 1832(7):897–904

    Article  CAS  Google Scholar 

  • Bohonowych JE, Hance MW, Nolan KD, Defee M, Parsons CH, Isaacs JS (2014) Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate 74(4):395–407

    Article  CAS  PubMed  Google Scholar 

  • Bornman L, Polla BS, Gericke GS (1996) Heat-shock protein 90 and ubiquitin: developmental regulation during myogenesis. Muscle Nerve 19(5):574–580

    Article  CAS  PubMed  Google Scholar 

  • Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle (Georgetown, Tex) 3(12):1530–1536

    Article  CAS  Google Scholar 

  • Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A (1999) Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 96(10):5645–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Ohwatari N, Matsumoto T, Kosaka M, Ohtsuru A, Yamashita S (1999) TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Proc Natl Acad Sci U S A 96(10):5645–5650

    Article  Google Scholar 

  • Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9(2):401–410

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung S-W, Lee J-H, Choi K-H, Park Y-C, Eo S-K, Rhim B-Y, Kim K (2009) Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem Biophys Res Commun 378(3):444–449

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Kajtár J, Hollósi M, Jalsovszky G, Holly S, Kahn CR, Gergely P, Söti C, Mihály K, Somogyi J (1993) ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J Biol Chem 268(3):1901–1907

    CAS  PubMed  Google Scholar 

  • De Paepe B, Creus KK, Martin J-J, Weis J, De Bleecker JL (2009) A dual role for HSP90 and HSP70 in the inflammatory myopathies: from muscle fiber protection to active invasion by macrophages. Ann N Y Acad Sci 1173:463–469

    Article  PubMed  CAS  Google Scholar 

  • De Paepe B, Creus KK, Weis J, De Bleecker JL (2012) Heat shock protein families 70 & 90 in Duchenne muscular dystrophy and inflammatory myopathy: Balancing muscle protection & destruction. Neuromuscul Disord Neuromuscul Disord 22(1):26–33

    Article  PubMed  Google Scholar 

  • Deane KD, Nicolls MR (2013) Developing better biomarkers for connective tissue disease-associated interstitial lung disease: citrullinated hsp90 autoantibodies in rheumatoid arthritis. Arthritis Rheum 65(4):864–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Deguchi Y, Negoro S, Kishimoto S (1987) Heat-shock protein synthesis by human peripheral mononuclear cells from sle patients. Biochem Biophys Res Commun 148(3):1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Echeverria PC, Picard D (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta (BBA) Mol Cell Res 1803(6):641–649

    Article  CAS  Google Scholar 

  • Erkeller-Yüksel FM, Isenberg DA, Dhillon VB, Latchman DS, Lydyard PM (1992) Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J Autoimmun 5(6):803–814

    Article  PubMed  Google Scholar 

  • Geller R, Taguwa S, Frydman J (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta (BBA) Mol Cell Res 1823(3):698–706

    Article  CAS  Google Scholar 

  • Hayem G, De Bandt M, Palazzo E, Roux S, Combe B, Eliaou JF, Sany J, Kahn MF, Meyer O (1999) Anti-heat shock protein 70 kDa and 90 kDa antibodies in serum of patients with rheumatoid arthritis. Ann Rheum Dis 58(5):291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Xu Q, Xiao W, Huang M (2006) The expression of molecular chaperone HSP90 and IL-6 in patients with systemic lupus erythematosus. J Huazhong Univ Sci Technol 26(6):664–666

    Article  CAS  Google Scholar 

  • Johnson SE, Wang X, Hardy S, Taparowsky EJ, Konieczny SF (1996) Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation. Mol Cell Biol 16(4):1604–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia SK, Kalia LV, McLean PJ (2010) Molecular chaperones as rational drug targets for Parkinson’s disease therapeutics. CNS Neurol Disord Drug Targets 9(6):741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones & their associated proteins. Cell Stress Chaperones 5(2):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L (2006) Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci 103(30):11318–11322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial & human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Investig 103(4):571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol (Baltimore, Md: 1950) 164(1):13–17

    Article  CAS  Google Scholar 

  • Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem Off J Histochem Soc 46(11):1291–1301

    Article  CAS  Google Scholar 

  • Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, van der Zee R (2000) Heat shock proteins generate β-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 30(2):594–603

    Article  CAS  PubMed  Google Scholar 

  • Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36(3):106–117

    Article  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2001) Microbial molecular chaperones. Adv Microb Physiol 44:93–140

    Article  CAS  PubMed  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    Article  CAS  PubMed  Google Scholar 

  • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural & functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658

    Article  CAS  PubMed  Google Scholar 

  • Millson SH, Truman AW, Rácz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Söti C, Piper PW (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 274(17):4453–4463

    Article  CAS  PubMed  Google Scholar 

  • Minota S, Koyasu S, Yahara I, Winfield J (1988) Autoantibodies to the heat-shock protein hsp90 in systemic lupus erythematosus. J Clin Invest 81(1):106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperth 18(6):576–585

    Article  CAS  Google Scholar 

  • Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27(11):1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Murshid A, Gong J, Calderwood SK (2010) Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. J Immunol 185(5):2903–2917

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Hinagata J, Tanaka T, Imanishi T, Wada Y, Kodama T, Doi T (2002) HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors. Biochem Biophys Res Commun 290(2):858–864

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15(6):419–424

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res Off J Am Assoc Cancer Res 18(1):64–76

    Article  CAS  Google Scholar 

  • Norton PM, Isenberg DA, Latchman DS (1989) Elevated levels of the 90 kd heat shock protein in a proportion of SLE patients with active disease. J Autoimmun 2(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143(4):901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchapakesan J, Daglis M, Gatenby P (1992) Antibodies to 65 kDa and 70 kDa heat shock proteins in rheumatoid arthritis & systemic lupus erythematosus. Immunol Cell Biol 70(Pt 5):295–300

    Article  CAS  PubMed  Google Scholar 

  • Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol (Baltimore, Md: 1950) 168(6):2997–3003

    Article  CAS  Google Scholar 

  • Pearl LH (2005) Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10(1):46–51

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872

    Article  CAS  PubMed  Google Scholar 

  • Procházková L, Hulejová H, NÄ›mec P, Å enolt L (2013) Cirkulující protein tepelného Å¡oku 90 (HSP90) u pacientů s revmatoidní artritidou a axiální spondyloartritidou. ÄŒes Revmatol 21(4):164–169

    Google Scholar 

  • Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58(12):3765–3775

    Article  CAS  PubMed  Google Scholar 

  • Ripley BJ, Stephanou A, Isenberg DA, Latchman DS (1999) Interleukin-10 activates heat-shock protein 90beta gene expression. Immunology 97(2):226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripley BJ, Isenberg D, Latchman D (2001) Elevated levels of the 90kDa heat shock protein (hsp90) in SLE correlate with levels of IL-6 and autoantibodies to hsp90. J Autoimmun 17(4):341–346

    Article  CAS  PubMed  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12114

    CAS  PubMed  Google Scholar 

  • Shaknovich R, Shue G, Kohtz DS (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 12(11):5059–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30(8):2211–2215

    Article  CAS  PubMed  Google Scholar 

  • Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P, Zwerina J, Spriewald B, Pileckyte M, Schett G et al (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum 58(5):1475–1484

    Article  CAS  PubMed  Google Scholar 

  • Somensi N, Brum PO, de Miranda Ramos V, Gasparotto J, Zanotto-Filho A, Rostirolla DC, da Silva Morrone M, Moreira JCF, Pens Gelain D (2017) Extracellular HSP70 activates ERK1/2, NF-kB and pro-inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 42(6):2507–2522

    Article  CAS  Google Scholar 

  • Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol (Baltimore, Md: 1950) 167(9):4844–4852

    Article  CAS  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Stephanou A, Amin V, Isenberg DA, Akira S, Kishimoto T, Latchman DS (1997) Interleukin 6 activates heat-shock protein 90 beta gene expression. Biochem J 321(Pt 1):103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanou A, Latchman DS, Isenberg DA, Yellon DM, Latchman DS, Ellis RJ, Schultz DR, Arnold PI, Hickey E, Brandon SE et al (1998) The regulation of heat shock proteins and their role in systemic lupus erythematosus. Sem Arthritis Rheum 28(3):155–162

    Article  CAS  Google Scholar 

  • Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A (2016) HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 13(1):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taherian A, Krone PH, Ovsenek N (2008) A comparison of Hsp90alpha & Hsp90beta interactions with cochaperones and substrates. Biochem Cell Biol Biochim Biol Cell 86(1):37–45

    Article  CAS  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528

    Article  CAS  PubMed  Google Scholar 

  • Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH (2014) Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann Rheum Dis 73(6):1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou K, Triantafilou M, Dedrick RL (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2(4):338–345

    Article  CAS  PubMed  Google Scholar 

  • Tsan M-F, Gao B (2004a) Cytokine function of heat shock proteins. Cell Physiol 286(4):C739–C744

    Article  CAS  Google Scholar 

  • Tsan M-F, Gao B (2004b) Heat shock protein and innate immunity. Cell Mol Immunol 1(4):274–279

    CAS  PubMed  Google Scholar 

  • Twomey BM, Dhillon VB, McCallum S, Isenberg DA, Latchman DS (1993) Elevated levels of the 90 kD heat shock protein in patients with systemic lupus erythematosus are dependent upon enhanced transcription of the hsp90β gene. J Autoimmun 6(4):495–506

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277(17):15107–15112

    Article  CAS  PubMed  Google Scholar 

  • Wallin RPA, Lundqvist A, Moré SH, von Bonin A, Kiessling R, Ljunggren H-G (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23(3):130–135

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DS (2011) Extracellular heat shock proteins: alarmins for the host immune system. Open Inflamm J 4(1):49–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wrighton KH, Lin X, Feng X-H (2008) Critical regulation of TGFbeta signaling by Hsp90. Proc Natl Acad Sci U S A 105(27):9244–9249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O (2003) T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17(11):1567–1569

    Article  CAS  PubMed  Google Scholar 

  • Zou Y-F, Xu J-H, Gu Y-Y, Pan F-M, Tao J-H, Wang D-G, Xu S-Q, Xiao H, Chen P-L, Liu S et al (2016) Single nucleotide polymorphisms of HSP90AA1 gene influence response of SLE patients to glucocorticoids treatment. SpringerPlus 5:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuehlke AD, Beebe K, Neckers L, Prince T (2015) Regulation and function of the human HSP90AA1 gene. Gene 570(1):8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This chapter was supported by grant projects AZV 16-33542A, AZV 16-33574A, SVV 260263, PRVOUK, UNCE 204022, and the Ministry of Health of the Czech Republic [Research Project No. 00023728].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Tomcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Storkanova, H., Tomcik, M. (2019). Role of Heat Shock Protein 90 in Autoimmune Inflammatory Rheumatic Diseases. In: Asea, A., Kaur, P. (eds) Chaperokine Activity of Heat Shock Proteins . Heat Shock Proteins, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-02254-9_5

Download citation

Publish with us

Policies and ethics