Skip to main content

Computer Intelligent Systems for Manufacture and Control

  • Chapter
  • First Online:
Intelligent Automation in Renewable Energy

Abstract

Automation of production and assembly processes is one of the important tasks in micromechanics. To produce totally automated micro factory or automate the solar concentrator production and assembly, it is necessary to develop a computer vision system that can replace an operator. A computer vision system may have several functions, for example, recognition of objects on the image of working area, recognition of mutual position of several components on the image, and measurement of component size, etc. We select several tasks that are connected with the micromechanics area and automatization—for example, size measurement of micro components. The object of measurement is a micro piston. Micro pistons are the components of heat engines that transfer the heat energy from solar concentrator to electrical energy. The goal of this work is the research and development of the LIRA (Limited Receptive Area) neural network and its application to measure the micro piston size. To obtain micro piston sizes, it is necessary to recognize its boundaries in the image. We propose to use LIRA neural network to extract and classify piston boundaries. In this chapter, we describe and analyze the preliminary results of LIRA application to micro piston boundaries recognition. Experiments with the recognition system have given us the information to improve the structure and parameters of the developed neural network. Experiments with the LIRA neural network showed the necessity to accelerate its processing time by implementing the neural network algorithms with electronic schemes such as Altera. The advantage of the neural network is its parallel structure and possibility of the training. FPGA allows the implementation of these parallel algorithms in a single device. This chapter contains brief description of ensemble neuron networks and some results of storage capacity estimation. We propose to apply this ensemble neural network to the problem of selection of adequate maneuver for robot-manipulator or for mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trimmer, W.S. (ed.): Micromechanics and MEMS Classic and Seminal Papers to 1990. IEEE Press, New York (1996)

    Google Scholar 

  2. Kussul, E., Rachkovskij, D., Baidyk, T., Talayev, S.: Micromechanical engineering: a basis for the low cost manufacturing of mechanical microdevices using microequipment. J. Micromech. Microeng. 6(4), 410–425 (1996)

    Article  Google Scholar 

  3. Eberhart, R.: Overview of computational intelligence and biomedical engineering applications. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 1125–1129 (1998)

    Google Scholar 

  4. Hui, T., Brown, D., Haynes, B., Wang, X.: Embedded e-diagnostic for distributed industrial machinery. In: IEEE International Symposium on Computational Intelligence for Measurement Systems and Applications, pp. 156–161 (2003)

    Google Scholar 

  5. Awadallah, M., Morcos, M.: Application of AI tools in fault diagnosis of electrical machines and drives. An overview. IEEE Trans. Energy Convers. 18(2), 245–251 (2003)

    Article  Google Scholar 

  6. Werbos, P.: Advanced forecasting methods for global crisis warning and models of intelligence. Gen. Syst. Yearb. 22, 25–38 (1977)

    Google Scholar 

  7. Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, L., Jackel, L., LeCun, J., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of classifier methods: a case study in handwritten digit recognition. In: Proceedings of 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 77–82 (1994)

    Google Scholar 

  8. Fukushima, K.: Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1, 119–130 (1988)

    Article  Google Scholar 

  9. Roska, T., Rodriguez-Vazquez, A.: Toward visual microprocessors. Proc. IEEE. 90(7), 1244–1257 (2002)

    Article  Google Scholar 

  10. Baidyk, T.: Application of flat image recognition technique for automation of micro device production. In: Proceedings of the International Conference on Advanced Intelligent Mechatronics “AIM’01”, Italy, pp. 488–494 (2001)

    Google Scholar 

  11. Baidyk, T., Kussul, E.: Application of neural classifier for flat image recognition in the process of microdevice assembly. In: Proceedings of IEEE International Join Conference on Neural Networks, USA, vol. 1, pp. 160–164 (2002)

    Google Scholar 

  12. Kussul, E., Baidyk, T., Wunsch, D.: Neural Networks and Micromechanics, p. 221. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Baidyk, T., Kussul, E.: Redes Neuronales, visión computacional y micro-mecánica, p. 157. Editorial Itaca-UNAM, México (2009)

    Google Scholar 

  14. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  15. Schwartz, R., Setauket, N.: Method and a circuit for determine a contour in an image. United States Patent N4, 433, 912, 28 Feb 1984

    Google Scholar 

  16. Toledo, G., Kussul, E., Baidyk, T.: Neural classifier for micro work piece recognition. Image Vis. Comput. 24(8), 827–836 (2006)

    Article  Google Scholar 

  17. Baidyk, T., Kussul, E., Makeyev, O., Caballero, A., Ruiz, L., Carrera, G., Velasco, G.: Flat image recognition in the process of microdevice assembly. Pattern Recogn. Lett. 25(1), 107–118 (2004)

    Article  Google Scholar 

  18. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, Washington, DC (1962). 215 pp

    MATH  Google Scholar 

  19. Kussul, E., Baidyk, T.: Improved method of handwritten digit recognition tested on MNIST database. Image Vis. Comput. 22(12), 971–981 (2004)

    Article  Google Scholar 

  20. Baidyk, T., Kussul, E., Hernandez Acosta, M.: LIRA neural network application for microcomponent measurement. Int. J. Appl. Math. Informat. 6(4), 173–180 (2012)

    Google Scholar 

  21. Baidyk, T., Kussul, E., Hernandez Acosta, M., Vega, A.: Research and development of a recognition system for measurements in micromechanics. ICMEAE 2013 (The International Conference on Mechatronics, Electronics and Automotive Engineering 2013), Cuernavaca, México, 19–22 November 2013, pp. 53–58

    Google Scholar 

  22. Hernandez Acosta, M., Baydyk, T., Kussul, E., Roldán Serrato, K.L., Olvera Tapia, O.: Measurements in micromechanics based on computer vision. In: The 12th All-Ukrainian International Conference on Signal/Image Processing and Pattern Recognition, UkrObraz, Kijv, Ukraine, 3–7 November 2014, pp. 119–122

    Google Scholar 

  23. Vega, A., Baidyk, T., Kussul, E., Pérez Silva, J.L.: FPGA realization of the LIRA neural classifier. Opt. Mem. Neural Netw. (Information Optics). 20(3), 168–180 (2011)

    Article  Google Scholar 

  24. Vega, A., Baidyk, T., Kussul, E., Pérez Silva, J.L.: FPGA based LIRA neural classifier. In: IEEE CERMA 2011 (Congreso de Electróonica, Robótica, y Mecánica Automotriz), World Trade Center, Morelos, Cuernavaca, Mexico, 15–18 Noviembre 2011, pp. 65–70

    Google Scholar 

  25. Vega, A., Luis Pérez, J., Baydyk, T., Kussul, E.: Development and implementation of the LIRA neural classifier. In: Proceedings of the World Congress on Engineering and Computer Science 2010 (AIENG), San Francisco, USA, 20–22 October 2010, pp. 822–826

    Google Scholar 

  26. Lai, C.Y., Lewis, F.L., Venkatakrishnan, R.X., Ge, S.S., Liew, T.: Disturbance and friction compensations in hard disk drives using neural networks. IEEE Trans. Ind. Electron. 57(2), 784–792 (2010)

    Article  Google Scholar 

  27. Ge, S.S., Wang, C.: Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)

    Article  Google Scholar 

  28. Kosmatopoulos, E.B., Polycarpou, M.M., Christodoulou, M.A., Ioannou, P.A.: High-order neural network structures for identification of dynamical systems. IEEE Trans. Neural Netw. 6(2), 422–431 (1995)

    Article  Google Scholar 

  29. Lewis, F.L., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)

    Article  Google Scholar 

  30. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor & Francis, London (1999)

    Google Scholar 

  31. Cirsttea, M., Danu, A., McCormick, M., Nicula, D.: A VHDL success story: electric drive system using neural controller. In: Proceedings of the IEEE VHDL International Users Forum Fall, Workshop, pp. 118–122 (2000)

    Google Scholar 

  32. Botros, N.M., Abdul-Aziz, M.: Hardware implementation of an artificial neural network using field programmable gate arrays (FPGA’s). IEEE Trans. Ind. Electron. 41(6), 665–667 (1994)

    Article  Google Scholar 

  33. McBader, S., Lee, P., Sartori, A.: The impact of modern FPGA architectures on neural hardware: a case study of the TOTEM neural processor. Proc. IEEE Int. Joint Conf. Neural Netw. 4, 3149–3154 (2004)

    Google Scholar 

  34. Jung, S., Kim, S.S.: Hardware implementation of a real-time neural network controller with a DSP and a FPGA for nonlinear systems. IEEE Trans. Ind. Electron. 54(1), 265–271 (2007)

    Article  Google Scholar 

  35. Wasserman, P.D.: Neural Computing. Theory and Practice. Von Nostrand Reinhold, New York (1989)

    Google Scholar 

  36. Hecht-Nielsen, R.: Neurocomputing. Addison Wesley, Reading, MA (1990)

    Google Scholar 

  37. Lee, Y.J., Lee, J., Kim, Y.B., Ayers, J., Volkovskii, A., Selverston, A., Abarbanel, H., Rabinovich, M.: Low power real time electronic neuron VLSI design using subthreshold techniques. IEEE Circuits Syst. 4, 744–747 (2004)

    Google Scholar 

  38. Padrón, J.L.P., Herrera, A., Prieto, R.: Dynamical behavior of an electronic neuron of commutation. In: Proceedings of the Mexican international Conference on Artificial Intelligence: Advances in Artificial intelligence, 11–14 April 2000. Lecture Notes in Computer Science, vol. 1793, pp. 338–349. Springer, London (2000)

    Google Scholar 

  39. McCulloch, W.S., Pitts, W.A.: A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shin’Ichiro, K., Makoto, I., Nozomu, H.: Analog LSI neuron model inspired by biological excitable membrane. Syst. Comput. Jpn. 36(6), 84–91 (2005)

    Article  Google Scholar 

  41. Szlavik, R.B., Bhuiyan, A.K., Carver, A., Jenkins, F.: Neural-electronic inhibition simulated with a neuron model implemented in SPICE. IEEE Eng. Med. Biol. 14(1), 109–115 (2006)

    Google Scholar 

  42. Requena, I., Delgado, M.: A model of fuzzy neuron. In: Proceedings of the 2nd International Conference on Fuzzy Logic Neural Networks (IIZUKA’90), Iizuka, Japan, 20–24 July 1990, pp. 13–26

    Google Scholar 

  43. Rasche, C., Douglas, R.J.: An improved silicon neuron. Analog Integr. Circuits Signal Process. 23(3), 227–236 (2000)

    Article  Google Scholar 

  44. Pérez, J.L., Miranda, A.I., Garcés, A.M.: A neuron model with parabolic burst response. Adv. Artif. Intell. Eng. Cybern. X, 6–10 (2003)

    Google Scholar 

  45. Dunin-Barkovskii, V.L., Osovets, N.B.: Neural network with formed dynamics of activity. Radiophys. Quantum Electron. 37(9), 687–693 (1994)

    Article  Google Scholar 

  46. Kryzhanovsky, B.V., Kryzhanovsky, V.M.: Distinguishing features of a small Hopfield model with clipping of synapses. Opt. Mem. Neural Netw. 17(3), 193–200 (2008)

    Article  Google Scholar 

  47. Kussul, E., Baidyk, T.: LIRA neural classifier for handwritten digit recognition and visual controlled microassembly. Neurocomputing. 69(16–18), 2227–2235 (2006)

    Article  Google Scholar 

  48. Kussul, E., Baidyk, T., Wunsch, D., Makeyev, O., Martín, A.: Permutation coding technique for image recognition systems. IEEE Trans. Neural Netw. 17(6), 1566–1579 (2006)

    Article  Google Scholar 

  49. Ososkov, G.: Effective neural network approach to image recognition and control. In: Proceedings of International Conference on Physics and Control, vol. 1, pp. 242–246 (2003)

    Google Scholar 

  50. Vitabile, S., Gentile, A., Sorbello, F.: A neural network based automatic road signs recognizer. In: Proceedings of the 2002 International Joint Conference on Neural Networks, vol. 3, pp. 2315–2320 (2002)

    Google Scholar 

  51. Clarke, T.J.W., Prage, R.W.R., Fallside, F.: The modified Kanerva model: theory and results for real-time word recognition. IEE Proc.-F. 138(1), 25–31 (1991)

    Article  Google Scholar 

  52. University program design laboratory package user guide, 32 pp. Altera Corporation (2001)

    Google Scholar 

  53. Kussul, E.M.: Associative neuron structures. Naukova Dumka, Kiev (1992). 144 pp. (in Russian)

    Google Scholar 

  54. Kohonen, T.: Self-organizing maps, 3rd edn, p. 460. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  55. Mikaelyan, A.L.: Neuro-holographic processing methods and availability of neural nanostructure development. Inform. Technol. Comput. Syst. 1, 9–19 (2004)

    Google Scholar 

  56. Kryzhanovsky, B.V., Litinskii, L.B.: The vector models of associative memory. In: Neuroinformatics-2003, MIFI Session, Moscow, Russia, pp. 72–85 (2003)

    Google Scholar 

  57. Nakano, K.: Associatron – a model of associative memory. IEEE Trans. Syst. Man Cybern. SMC–2(3), 380–388 (1972)

    Article  Google Scholar 

  58. Amosov, N.M., Baidyk, T.N., Goltsev, A.D., et al.: Neurocomputers and Intelligent Robots, p. 272. Nauk. Dumka, Kiev (1991). (in Russian)

    Google Scholar 

  59. Kussul, E., Baidyk, T.: Structure of neural ensemble. In: The RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, Rostov-on-Don, Russia, pp. 423–434 (1992)

    Google Scholar 

  60. Frolov, A., Husek, D., Muraviev, I.: Informational efficiency of sparsely encoded Hopfield-like associative memory. In: Neuroinformatics-2003, MIFI Session, Moscow, Russia, pp. 28–70 (2003)

    Google Scholar 

  61. Tsodyks, M.V.: Associative memory in asymmetric diluted network with low level of activity. Europhys. Lett. 7(3), 203–208 (1988)

    Article  Google Scholar 

  62. Hebb, D.O.: The organization of behaviour, p. 319. Wiley, New York (1949)

    Google Scholar 

  63. Milner, P.M.: The cell ensemble: Mark 2. Psychol. Rev. 64(4), 242–252 (1957)

    Article  Google Scholar 

  64. Milner, P.: The autonomous brain: a neural theory of attention and learning, p. 153. Lawrence Erlbaum Associates, Mahwah, NJ (1999)

    Book  Google Scholar 

  65. Baidyk, T.N.: Neural networks and artificial intelligence Problems. Naukova Dumka, Kiev (2001). 264 pp. (in Russian)

    Google Scholar 

  66. Goltsev, A.D.: Neural networks with the assembly organization. Naukova Dumka, Kiev (2005). 200 pp. (in Russian)

    MATH  Google Scholar 

  67. Breitenberg, V.: Cell ensembles in the cerebral cortex. Lect. Notes Biomath. 21, 171–178 (1978)

    Article  Google Scholar 

  68. Palm, G., Sommer, F.T.: Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network. 3, 177–186 (1992)

    Article  MATH  Google Scholar 

  69. Knoblauch, A.: Neural associative memory for brain modeling and information retrieval. Inf. Process. Lett. 95(6), 537–544 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  70. Kussul, E., Baidyk, T., López, B., Lopez, P., Velasco, G., Caballero, A., Ruiz, L., Silva, H.: Wireboard prototyping method. J. Appl. Res. Technol. 4(1), 75–81 (2006)

    Google Scholar 

  71. Kussul, E., Baydyk, T., De Luca Pennacchia, A.: Tarjetas para circuitos electrónicos con ranuras para conexiones. Prioridad de 6.02.2009, IMPIl, Patente MX 320896 B, 14.05.2014

    Google Scholar 

  72. De Luca Pennacchia, A., Kussul, E., Baydyk, T.: Método de fabricación de las tarjetas con ranuras para circuitos electrónicos. IMPI, Prioridad de 20.08.2009, Patente No 307903, 7.03.2013

    Google Scholar 

  73. Baydyk, T., Kussul, E., De Luca Penaccio, A.: Método para elaborar tarjetas para circuitos electrónicos con ranuras para conexiones y alambrar de manera automatizada sus rutas de interconexión interna. Patente MX 318460 B, Prioridad de 30.04.2010, IMPI, 12.03.2014

    Google Scholar 

  74. Baturone, I., Moreno-Velo, F.J., Blanco, V., Ferruz, J.: Design of embedded DSP-based fuzzy controllers for autonomous mobile robots. IEEE Trans. Ind. Electron. 55(2), 928–936 (2008)

    Article  Google Scholar 

  75. Gupta, R., Masoud, A., Chow, M.-Y.: A delay-tolerant potential-field-based network implementation of an integrated navigation system. IEEE Trans. Ind. Electron. 57(2), 769–783 (2010)

    Article  Google Scholar 

  76. Martínez-Salvador, B., Pérez-Francisco, M., Del Pobil, A.: Collision detection between robot arms and people. J. Intell. Robot. Syst. 38, 105–119 (2003)

    Article  Google Scholar 

  77. Fraile, J., Paredis, Ch., Wang, C.-H., Khosha, P.: Agent-based planning and control of a multi-manipulator assembly system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1219–1225 (1999)

    Google Scholar 

  78. Brooks, R.: Solving the find-path problem by good representation of free space. In: Proceedings of the 2nd American Association for Artificial Intelligence, pp. 381–386 (1982)

    Google Scholar 

  79. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Intern. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  80. Lozano-Pérez, T., Wesley, M.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM. 22(10), 560–570 (1979)

    Article  Google Scholar 

  81. Lei, G.: A neuron model with fluid properties for solving labyrinthine puzzle. Biol. Cybern. 64, 61–67 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  82. Plumer, E.: Cascading a systolic and a feedforward neural network for navigation and obstacle avoidance using potential fields. Prepared for Ames Research Center, Contract NGT-50 642, NASA Contractor Rep. 177 575 (1991)

    Google Scholar 

  83. Plumer, E.: Neural network structure for navigation using potential fields. In: International Joint Conference on Neural Networks, IJCNN, pp. 327–332 (1992)

    Google Scholar 

  84. Menezes, S.A., Dias, P.J.: Avoiding obstacles using a connectionist network. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’97, pp. 1236–1242 (1997)

    Google Scholar 

  85. Goltsev, A., Kussul, E.: Controlling the motion of a moving robot using a neuroid network. Trans. Autom. Remote Control. 43(5, part 1), 606–611 (1982)

    Google Scholar 

  86. Creed, R., Denny-Brown, D., Eccles, J., Lidell, E., Sherrington, C.: Reflex Activity of the Spinal Cord. Oxford University Press, London (1932)

    Google Scholar 

  87. Hubel, D.: Columns and their function in the primate visual cortex. In: Reichardt, W., Poggio, T. (eds.) Theoretical Approaches in Neurobiology. MIT Press, Cambridge, MA (1981)

    Google Scholar 

  88. Gerstein, G., Bedenbaugh, P., Aersten, M.H.J.: Neuronal assemblies. IEEE Trans. Biomed. Eng. 36(1), 4–14 (1989)

    Article  Google Scholar 

  89. Kussul, E., Baidyk, T., Makeyev, O.: Pairwise permutation coding neural classifier. In: IEEE International Joint Conference on Neural Networks, IJCNN 2007, Orlando, FL, 12–17 August 2007, pp. 1471.1–1471.6

    Google Scholar 

  90. Amosov, N.M., Kussul, E.M., Fomenko, V.D.: Transport robot with neural network control system. In: 4th International Joint Conference on Artificial Intelligence IJCAI 1975, Tbilisi, Georgia, vol. 9, pp. 9.1–9.10 (1975)

    Google Scholar 

  91. Masoud, S.A., Masoud, A.A.: Motion planning in the presence of directional and obstacle avoidance constraints using nonlinear anisotropic, harmonic potential fields: a physical metaphor. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 32(6), 705–723 (2002)

    Article  Google Scholar 

  92. Baidyk, T., Kussul, E.: Ensemble neural networks. Opt. Mem. Neural Netw. (Information Optics). 18(4), 295–303 (2009)

    Article  Google Scholar 

  93. Palm, G.: Neural Assemblies – Studies of Brain Functions, vol. 7. Springer, New York (1982)

    Book  Google Scholar 

  94. Calderon Reyes, D., Baydyk, T., Kussul, E.: Ensembles’ structures in neural networks. In: 1st International Congress on Instrumentation and Applied Sciences ICIAS, SOMI XXV, Cancun, Quintana Roo, Mexico, 26–29 October 2010, p. 6

    Google Scholar 

  95. Calderon, D., Baidyk, T., Kussul, E.: Information coding with neural ensembles for a mobile robot. In: IEEE International Joint Conference on Neural Networks, San Jose, CA, 31 July–5 August 2011, pp. 828–835

    Google Scholar 

  96. Calderon, D., Baidyk, T., Kussul, E.: Hebbian ensemble neural network for robot movement control. Opt. Mem. Neural Netw. 22(3), 166–183 (2013)

    Article  Google Scholar 

  97. Baidyk, T., Kussul, E., De Luca, A., Vega, A., Calderon Reyes, D., Rodriquez-Mendoza, J.: Ensembles in neural networks. In: Proceedings of the Tenth All-Ukrainian International Conference, Kyjiv, Ukraine, 25–29 October 2010, pp. 23–26

    Google Scholar 

  98. Kussul, E., Makeyev, O., Baidyk, T., Calderon Reyes, D.: Neural network with ensembles. In: WCCI 2010, IEEE World Congress on Computational Intelligence (IJCNN 2010), Barcelona, Spain, 18–23 July 2010, pp. 2955–2961

    Google Scholar 

  99. Espinola, A., Romay, A., Baydyk, T., Kussul, E.: Robust vision system to illumination changes in a color-dependent task. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics (IEEE-ROBIO 2011), Phuket, Thailand, 7–12 December 2011, pp. 521–526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baydyk, T., Kussul, E., Wunsch II, D.C. (2019). Computer Intelligent Systems for Manufacture and Control. In: Intelligent Automation in Renewable Energy. Computational Intelligence Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-02236-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02236-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02235-8

  • Online ISBN: 978-3-030-02236-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics