Skip to main content

Heat Engines

  • Chapter
  • First Online:
Intelligent Automation in Renewable Energy

Abstract

Currently, Stirling cycle and Rankine cycle heat engines are used to transform the heat energy from solar concentrators into mechanical and electrical energy. The Rankine cycle is used in large-scale solar power plants, and the Stirling cycle can be used for small-scale solar power plants. The Stirling cycle heat engine has many advantages, such as high efficiency, long service life, silent operation, etc. However, the Stirling cycle is good for high temperature differences (up to 700 °C). It demands the use of expensive materials and has problems with lubrication. Its efficiency depends on the efficiency of the heat regenerator. The design and manufacture of a heat regenerator is not a trivial problem because the regenerator has to be placed in the internal space of the engine. It is possible to avoid this problem if the regenerator is placed outside of the internal engine space. To realize this idea, it is necessary to develop the Ericsson cycle heat engine (ECHE). This book’s authors propose a structure of this engine [1]. A computer simulation was designed to evaluate the Ericsson engine parameters, and the obtained results are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kussul, E., Makeyev, O., Baidyk, T., Olvera, O.: Design of Ericsson heat engine with micro channel recuperator. ISRN Renew. Energy Article ID 613642, 8 p. (2012). https://doi.org/10.5402/2012/613642

    Article  Google Scholar 

  2. Kussul, E., Baidyk, T., Lara-Rosano, F., Saniger, J.M., Bruce, N.: Support frame for micro facet solar concentrator. In: The 2nd IASME/WSEAS International Conference on Energy and Environment (EE’07), pp. 300–304, Portoroz (Portorose), Slovenia, 15–17 May 2007

    Google Scholar 

  3. Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J.M., Bruce, N.: Flat facet parabolic solar concentrator with support cell for one and more mirrors. WSEAS Trans. Power Syst. 3(8), 577–586 (2008)

    Google Scholar 

  4. Kussul, E., Baidyk, T., Lara, F., Saniger, J., Bruce, N., Estrada, C.: Micro facet solar concentrator. Int. J. Sustain. Energy. 27(2), 61–71 (2008)

    Article  Google Scholar 

  5. Kongtragool, B., Wongwises, S.: A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain. Energy Rev. 7, 131–154 (2003)

    Article  Google Scholar 

  6. American Stirling Company (beautiful Stirling engines and kits). http://www.stirlingengine.com/

  7. Hirata, K.: Schmidt Theory for Stirling Engines. http://www.bekkoame.ne.jp/~khirata/academic/schmidt/schmidt.htm (1997)

  8. Kongtragool, B., Wongwises, S.: Performance of low temperature differential Stirling engines. Renew. Energy. 32, 547–566 (2007)

    Article  Google Scholar 

  9. Chen, J., Yan, Z., Chen, L., Andresen, B.: Efficiency bound of a solar-driven Stirling heat engine system. Int. J. Energy Res. 22, 805–812 (1998)

    Article  Google Scholar 

  10. Berrin Erbay, L., Yavuz, H.: Analysis of an irreversible Ericsson engine with a realistic regenerator. Appl. Energy. 62(3), 155–167 (1999)

    Article  Google Scholar 

  11. Bonnet, S., Alaphilippe, M., Stouffs, P.: Energy, exergy and cost analysis of a micro-generation system based on an Ericsson engine. Int. J. Therm. Sci. 44, 1161–1168 (2005)

    Article  Google Scholar 

  12. Kussul, E., Baydyk, T.: Thermal motor for solar power plants. In: 3er Congreso Internacional de Ciencias, Tecnología, Artes y Humanidades, pp. 684–688, Coatzacoalcos, Veracruz, México, 3-6 de junio 2009

    Google Scholar 

  13. Ruiz-Huerta, L., Caballero-Ruiz, A., Ruiz, G., Ascanio, G., Baydyk, T., Kussul, E., Chicurel, R.: Diseño de un motor de ciclo Ericsson modificado empleando energía solar, Congreso de Instrumentación SOMI XXIV, pp. 1–7, Mérida, Yucatán, México, 14–16 de Octubre de 2009

    Google Scholar 

  14. Kussul, E.M., Rachkovskij, D.A., Baidyk, T.N., Talayev, S.A.: Micromechanical engineering: a basis for the low-cost manufacturing of mechanical micro devices using microequipment. J. Micromech. Microeng. 6, 410–425 (1996)

    Article  Google Scholar 

  15. Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero, A., Velasco, G., Kasatkina, L.: Development of micromachine tool prototypes for microfactories. J. Micromech. Microeng. 12, 795–813 (2002)

    Article  Google Scholar 

  16. Kussul, E., Baidyk, T., Wunsch, D.: Neural Networks and Micro Mechanics, p. 210. Springer, Berlin (2010)

    Book  Google Scholar 

  17. Kussul, E.: Estimation of Ericsson heat engine parameters. In: 1st International Congress on Instrumentation and Applied Sciences ICIAS, SOMI XXV, p. 6, Cancun, Quintana Roo, Mexico, 26–29, October 2010

    Google Scholar 

  18. Kussul, E., Baidyk T., Lara-Rosano F., Saniger Blesa, J.M., Ascanio, G., Bruce, N.: Method and Device for Mirrors Position Adjustment of a Solar Concentrator. USA Patent N US 8,631,995 B2, 21 Jan 2014

    Google Scholar 

  19. Kussul, E., Baidyk, T., Lara-Rosano, F., Saniger Blesa, J.M., Bruce, N.: Concentrador Solar, Mexico. Patente No 309274, 26.04.2013

    Google Scholar 

  20. Kussul E., Baidyk T., Lara-Rosano F., Saniger Blesa, J.M., Ascanio, G., Bruce, N.: Método y dispositivo de ajuste de posición de espejos de un concentrador solar, Mexico. Patente No 313963, 30.09.2013

    Google Scholar 

  21. Teraji D.G.: Concentrated Solar Power Hybrid Gas Turbine Demonstration Test Results, ASME 2015 Power Conference, p. 6, San Diego, California, June 28–July 2, 2015, Paper No. POWER2015-49572. https://doi.org/10.1115/POWER2015-49572

  22. Touré, A.: Pascal Stouffs modeling of the Ericsson engine. Energy. 76(1), 445–452 (2014)

    Article  Google Scholar 

  23. Lontsi, F., Hamandjoda, O., Djanna, K.F., Stouffs, P., Nganhou, J.: Dynamic modeling of a small open Joule cycle reciprocating Ericsson engine: simulation results. Energy Sci. Eng. 1(3), 109–117 (2013). https://doi.org/10.1002/ese3.13

    Article  Google Scholar 

  24. Fula, A., Stouffs, P., Sierra, F.: In-cylinder heat transfer in an Ericsson engine prototype. In: International Conference on Renewable Energies and Power Quality (ICREPQ’13), p. 6, No. 11, Bilbao (Spain), 20–22 March 2013

    Google Scholar 

  25. Kongtragool, B., Wongwises, S.: A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain. Energy Rev. 7(2), 131–154 (2003)

    Article  Google Scholar 

  26. Kongtragool, B., Wongwises, S.: Performance of low temperature differential Stirling engines. Renew. Energy. 32(4), 547–566 (2007)

    Article  Google Scholar 

  27. Aran, G.: Aerothermodynamic analysis and design of a rolling piston engine, p. 124. Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University for the Degree of Master of Science in Aerospace Engineering, June 2007

    Google Scholar 

  28. Wei, G., Hui, L.C., Wang, Y.Z.: The performance optimization of rolling piston compressors based on CFD simulation. In: Proceedings of International Compressor Engineering Conference, Purdue, Paper 1621. http://docs.lib.purdue.edu/icec/1621 (2004)

  29. Li, Z., Minxia, L., Yitai, M., Zhongyan, L.: Simulation analysis of a two rolling piston expander replacing a throttling valve in a conventional refrigerant heat pump system. In: Proceedings of International Compressor Engineering Conference, N 1339, pp. 1–10, Purdue, 16–19 July 2012

    Google Scholar 

  30. Cho, I.-S., Jung, J.-Y.: The influence of vane on the lubrication characteristics between the vane and rolling piston of a rotary compressor. J. Mech. Sci. Technol. 20(12), 2242–2249 (2006)

    Article  Google Scholar 

  31. Cho, I.-S., Seok-Hyung, O., Jung, J.-Y.: The lubrication characteristics between the vane and rolling piston in rotary compressor used for refrigeration and air-conditioning systems. KSME Int. J. 15(5), 562–568 (2001)

    Article  Google Scholar 

  32. Erbay, L.B., Yavuz, H.: Analysis of an irreversible Ericsson engine with a realistic regenerator. Appl. Energy. 62(3), 155–167 (1999)

    Article  Google Scholar 

  33. Jun, Y., Long, Z., Li, Z., Yuan, L.H.: Development of a two-cylinder rolling piston CO2 expander. In: Proceedings of International Compressor Engineering Conference at Purdue, Paper 2022, 1-5, 12–15 July 2010. http://docs.lib.purdue.edu/icec/2022

  34. Sakurai, E., Hamilton, J.F.: Measurement of operating conditions of rolling piston type rotary compressors. In: Proceedings of International Compressor Engineering Conference, pp. 60–68, Paper 373. http://docs.lib.purdue.edu/icec/373 (1982)

  35. Ishii, N., Yamamura, M., Muramatsu, S., Yamamoto, S., Sakai, M.: Mechanical efficiency of a variable speed scroll compressor. In: Proceedings of International Compressor Engineering Conference, pp. 192–199, Paper 705. http://docs.lib.purdue.edu/icec/705 (1990)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baydyk, T., Kussul, E., Wunsch II, D.C. (2019). Heat Engines. In: Intelligent Automation in Renewable Energy. Computational Intelligence Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-02236-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02236-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02235-8

  • Online ISBN: 978-3-030-02236-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics