Skip to main content

Transport in the Two-Dimensional Honeycomb Lattice with Substitutional Disorder

  • Chapter
  • First Online:
Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices

Part of the book series: Springer Theses ((Springer Theses))

  • 276 Accesses

Abstract

In this chapter, we examine the transport properties of the two-dimensional honeycomb lattice with substitutional disorder, using the site quantum percolation model. Like the Anderson localization, the quantum percolation problem is characterized by an Anderson-type Hamiltonian and can therefore be studied using the spectral approach. Here we use the discrete random Schrödinger operator (Eq. 1.3) with a (modified) bimodal probability distributions χ for the random variables ϵi, which is a realistic representation of a doped system where nearest-neighbor interactions dominate. The discussion starts with a brief introduction of basic definitions in the discrete percolation setup together with an overview of some currently established results (Sect. 5.1). The formulation of the quantum percolation problem describing the doped two-dimensional honeycomb lattice is presented in Sect. 5.2. Section 5.3 provides a theoretical and numerical justification for the choice of the (modified) probability distribution of random variables representing doping. Finally, the results from the spectral analysis of lattices with various concentration of doping are provided in Sect. 5.4.

This chapter published as: E. G. Kostadinova, A. Cameron, F. Guyton, Liaw, C. D., Matthews, L. S., & Hyde, T. W. Transport in the two-dimensional lattice with substitutional disorder (submitted for review in Phys. Rev. B)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, one can consider all vertices to be open and let the bonds be open or closed with a certain probability. This setup is called a bond percolation problem.

  2. 2.

    Note that the spectral approach only requires that v0 and v1 are any two (different) vectors in the Hilbert space of interest. The choice v0 = δ0 and v1 = δ1 ensures faster computation times and is not related to the generality of the spectral method.

  3. 3.

    Here nD stands for the concentration of the B-type doping material and is equal to the probability for a closed state 1 − p in the quantum percolation problem.

  4. 4.

    Here the subscript hc in Dhc stands for honeycomb.

Bibliography

  1. E. Abrahams, P. Anderson, D. Licciardello, T. Ramakrishnan, Scaling theory of localization. Phys. Rev. Lett. 42(10) (1979)

    Google Scholar 

  2. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 101(8), 086402 (2008)

    Article  ADS  Google Scholar 

  3. A. Bostwick et al., Quasiparticle transformation during a metal-insulator transition in graphene. Phys. Rev. Lett. 103(5), 056404 (2009)

    Article  ADS  Google Scholar 

  4. S. Agnoli, M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 4(14), 5002–5025 (2016)

    Article  Google Scholar 

  5. I. Amanatidis, S.N. Evangelou, Quantum chaos in weakly disordered graphene. Phys. Rev. B 79(20), 205420 (2009)

    Article  ADS  Google Scholar 

  6. J.E. Barrios-Vargas, G.G. Naumis, Critical wavefunctions in disordered graphene. J. Phys. Condens. Matter 24(25), 255305 (2012)

    Article  ADS  Google Scholar 

  7. E. Amanatidis, I. Kleftogiannis, D.E. Katsanos, S.N. Evangelou, Critical level statistics for weakly disordered graphene. J. Phys. Condens. Matter 26(15), 155601 (2014)

    Article  Google Scholar 

  8. E.G. Kostadinova, C.D. Liaw, L.S. Matthews, T.W. Hyde, Physical interpretation of the spectral approach to delocalization in infinite disordered systems. Mater. Res. Express 3(12), 125904 (2016)

    Article  ADS  Google Scholar 

  9. E.G. Kostadinova et al., Delocalization in infinite disordered 2D lattices of different geometry. Phys. Rev. B 96, 235408 (2017)

    Article  ADS  Google Scholar 

  10. C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153(6), 1022–1038 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)

    Article  ADS  Google Scholar 

  12. S.R. Broadbent, J.M. Hammersley, Percolation processes: I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Mookerjee, T. Saha-Dasgupta, I. Dasgupta, Quantum transmittance through random media, in Quantum and semi-classical percolation and breakdown in disordered solids, ed. by B. K. Chakrabarti, K. K. Bardhan, A. K. Sen (Eds), (Springer, Berlin/Heidelberg, 2009), pp. 1–25

    Google Scholar 

  14. Y. Meir, A. Aharony, A.B. Harris, Delocalization transition in two-dimensional quantum percolation. EPL Europhys. Lett. 10(3), 275 (1989)

    Article  ADS  Google Scholar 

  15. G. Grimmett, Percolation and disordered systems, in Lectures on probability theory and statistics, ed. by P. Bernard (Ed), (Springer, Berlin/Heidelberg, 1997), pp. 153–300

    Google Scholar 

  16. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.C. Wierman, M.J. Appel, Infinite AB percolation clusters exist on the triangular lattice. J. Phys. Math. Gen. 20(9), 2533 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. Z.V. Djordjevic, H.E. Stanley, A. Margolina, Site percolation threshold for honeycomb and square lattices. J. Phys. Math. Gen. 15(8), L405 (1982)

    Article  ADS  Google Scholar 

  19. M.F. Sykes, J.W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys. 5(8), 1117–1127 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.L. Jacobsen, Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras. J. Phys. Math. Theor. 48(45), 454003 (2015)

    Article  MathSciNet  Google Scholar 

  21. X. Xu, J. Wang, J.-P. Lv, Y. Deng, Simultaneous analysis of three-dimensional percolation models. Front. Phys. 9(1), 113–119 (2014)

    Article  Google Scholar 

  22. M.F. Sykes, J.W. Essam, Critical percolation probabilities by series methods. Phys. Rev. 133(1A), A310–A315 (1964)

    Article  ADS  Google Scholar 

  23. M. Acharyya, D. Stauffer, Effects of boundary conditions on the critical spanning probability. Int. J. Mod. Phys. C 09(04), 643–647 (1998)

    Article  ADS  Google Scholar 

  24. J. Wang, Z. Zhou, W. Zhang, T.M. Garoni, Y. Deng, Bond and site percolation in three dimensions. Phys. Rev. E 87(5), 052107 (2013)

    Article  ADS  Google Scholar 

  25. C.D. Lorenz, R.M. Ziff, Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation. J. Phys. Math. Gen. 31(40), 8147 (1998)

    Article  ADS  Google Scholar 

  26. C.D. Lorenz, R.M. Ziff, Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E 57(1), 230–236 (1998)

    Article  ADS  Google Scholar 

  27. M.F. Sykes, D.S. Gaunt, J.W. Essam, The percolation probability for the site problem on the face-centred cubic lattice. J. Phys. Math. Gen. 9(5), L43 (1976)

    Article  ADS  Google Scholar 

  28. S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus Académie Sci. Ser. Math. 333(3), 239–244 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  29. S. Smirnov, W. Werner, Critical exponents for two-dimensional percolation. Math. Res. Lett. 8, 729–744 (2001)

    Article  MathSciNet  Google Scholar 

  30. G. Schubert, H. Fehske, Dynamical aspects of two-dimensional quantum percolation. Phys. Rev. B 77(24), 245130 (2008)

    Article  ADS  Google Scholar 

  31. M.F. Islam, H. Nakanishi, Localization-delocalization transition in a two-dimensional quantum percolation model. Phys. Rev. E 77(6), 061109 (2008)

    Article  ADS  Google Scholar 

  32. S. Kirkpatrick, T.P. Eggarter, Localized states of a binary alloy. Phys. Rev. B 6(10), 3598–3609 (1972)

    Article  ADS  Google Scholar 

  33. Y. Shapir, A. Aharony, A.B. Harris, Localization and quantum percolation. Phys. Rev. Lett. 49(7), 486–489 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  34. C.M. Soukoulis, G.S. Grest, Localization in two-dimensional quantum percolation. Phys. Rev. B 44(9), 4685–4688 (1991)

    Article  ADS  Google Scholar 

  35. Y. Avishai, J.M. Luck, Quantum percolation and ballistic conductance on a lattice of wires. Phys. Rev. B 45(3), 1074–1095 (1992)

    Article  ADS  Google Scholar 

  36. A. Mookerjee, I. Dasgupta, T. Saha, Quantum percolation. Int. J. Mod. Phys. B 09(23), 2989–3024 (1995)

    Article  ADS  Google Scholar 

  37. H.N. Nazareno, P.E. de Brito, E.S. Rodrigues, Quantum percolation in a two-dimensional finite binary alloy: Interplay between the strength of disorder and alloy composition. Phys. Rev. B 66(1), 012205 (2002)

    Article  ADS  Google Scholar 

  38. A. Eilmes, R. A. Römer, M. Schreiber, Exponents of the localization lengths in the bipartite Anderson model with off-diagonal disorder. Phys. B Condens. Matter 296(1–3), 46–51 (2001)

    Article  ADS  Google Scholar 

  39. D. Daboul, I. Chang, A. Aharony, Series expansion study of quantum percolation on the square lattice. Eur. Phys. J. B Condens. Matter Complex Syst. 16(2), 303–316 (2000)

    Article  Google Scholar 

  40. V. Srivastava, M. Chaturvedi, New scaling results in quantum percolation. Phys. Rev. B 30(4), 2238–2240 (1984)

    Article  ADS  Google Scholar 

  41. T. Odagaki, N. Ogita, H. Matsuda, Quantal percolation problems. J. Phys. C Solid State Phys. 13(2), 189 (1980)

    Article  ADS  Google Scholar 

  42. T. Koslowski, W. von Niessen, Mobility edges for the quantum percolation problem in two and three dimensions. Phys. Rev. B 42(16), 10342–10347 (1990)

    Article  ADS  Google Scholar 

  43. T. Odagaki, K.C. Chang, Real-space renormalization-group analysis of quantum percolation. Phys. Rev. B 30(3), 1612–1614 (1984)

    Article  ADS  Google Scholar 

  44. R. Raghavan, Study of localization in site-dilute systems by tridiagonalization. Phys. Rev. B 29(2), 748–754 (1984)

    Article  ADS  Google Scholar 

  45. C.M. Chandrashekar, T. Busch, Quantum percolation and transition point of a directed discrete-time quantum walk. Sci. Rep. 4, 6583 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostadinova, E.G. (2018). Transport in the Two-Dimensional Honeycomb Lattice with Substitutional Disorder. In: Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02212-9_5

Download citation

Publish with us

Policies and ethics