Skip to main content

Hybrid Memristor-Based Impulsive Neural Networks

  • Chapter
  • First Online:
Book cover Introduction to Hybrid Intelligent Networks

Abstract

This chapter introduces a class of heterogeneous delayed impulsive neural networks with memristors and focuses on their collective evolution for multisynchronization. The multisynchronization represents a diversified collective behavior that is inspired by multitasking as well as observations of heterogeneity and hybridity arising from system models. In view of memristor, the memristor-based impulsive neural network is first represented by an impulsive differential inclusion. According to the memristive and impulsive mechanism, a fuzzy logic rule is introduced, and then a new fuzzy hybrid impulsive and switching control method is presented correspondingly. It is shown that using the proposed fuzzy hybrid control scheme, multisynchronization of interconnected memristor-based impulsive neural networks can be guaranteed with a positive exponential convergence rate. The heterogeneity and hybridity in system models thus can be indicated by the obtained error thresholds that contribute to the multisynchronization. Numerical examples are presented and compared to demonstrate the effectiveness of the developed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Pu, H. Gong, X. Li, and Q. Luo, “Developing neuronal networks: Self-organized criticality predicts the future,” Sci. Reports, vol. 3, no. 1081, pp. 1–6, 2013.

    Google Scholar 

  2. F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, pp. 229–239, 2001.

    Article  Google Scholar 

  3. H. Modares, I. Ranatunga, F. L. Lewis, and D. Popa, “Optimized assistive human-robot interaction using reinforcement learning,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 655–667, 2016.

    Article  Google Scholar 

  4. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl Acad. Sci., vol. 79, no. 8, pp. 2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  5. Z.-H. Guan and G. Chen, “On delayed impulsive Hopfield neural networks,” Neural Netw., vol. 12, pp. 273–280, 1999.

    Article  Google Scholar 

  6. A. Thomas, “Memristor-based neural networks,” J. Phys. D: Appl. Phys., vol. 46, no. 9, pp. 093001(1–12), 2013.

    Article  Google Scholar 

  7. L. Chua, “Memristor-The missing circuit element,” IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

    Article  Google Scholar 

  8. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

    Article  Google Scholar 

  9. X. Liu, T. Chen, J. Cao, and W. Lu, “Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches,” Neural Netw., vol. 24, no. 10, pp. 1013–1021, 2011.

    Article  Google Scholar 

  10. B. Hu, D.-X. He, Z.-H. Guan, D.-X. Zhang, and X.-H. Zhang, “Hybrid subgroup coordination of multi-agent systems via nonidentical information exchange,” Neurocomputing, vol. 168, pp. 646–654, 2015.

    Article  Google Scholar 

  11. D.-X. He, G. Ling, Z.-H. Guan, B. Hu, and R.-Q. Liao, “Multisynchronization of coupled heterogeneous genetic oscillator networks via partial impulsive control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 2, pp. 335–342, 2018.

    Article  MathSciNet  Google Scholar 

  12. Z.-H. Guan, Z.-W. Liu, G. Feng, and Y.-W. Wang, “Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control,” IEEE Trans. Circuits Syst. I, vol. 57, no. 8, pp. 2182–2195, 2010.

    Article  MathSciNet  Google Scholar 

  13. W. Zhang, C. Li, T. Huang, and X. He, “Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3308–3313, 2015.

    Article  MathSciNet  Google Scholar 

  14. X. Yang and D. W. C. Ho, “Synchronization of delayed memristive neural networks: robust analysis approach,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 3377–3387, 2016.

    Article  Google Scholar 

  15. Z. Guo, S. Yang, and J. Wang, “Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1300–1311, 2015.

    Article  MathSciNet  Google Scholar 

  16. S. Wen, Z. Zeng, T. Huang, and Y. Zhang, “Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators,” IEEE Trans. Fuzzy Syst., vol. 22, no, 6, pp. 1704–1713, 2014.

    Article  Google Scholar 

  17. A. Wu, S. Wen, and Z. Zeng, “Synchronization control of a class of memristor-based recurrent neural networks,” Inform. Sci., vol. 183, no. 1, pp. 106–116, 2012.

    Article  MathSciNet  Google Scholar 

  18. F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “Complete characterization of the stability of cluster synchronization in complex dynamical networks,” Sci. Advances, vol. 2, no. 4, pp. e1501737, 2016.

    Article  Google Scholar 

  19. J. Cao and L. Li, “Cluster synchronization in an array of hybrid coupled neural networks with delay,” Neural Netw., vol. 22, no. 4, pp. 335–342, 2009.

    Article  Google Scholar 

  20. L. Li, D. W. C. Ho, J. Cao, and J. Lu, “Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism,” Neural Netw., vol. 76, pp. 1–12, 2016.

    Article  Google Scholar 

  21. W. Wu, W. Zhou, and T. Chen, “Cluster synchronization of linearly coupled complex networks under pinning control,” IEEE Trans. Circuits Syst. I, vol. 56, no. 4, pp. 829–839, 2009.

    Article  MathSciNet  Google Scholar 

  22. Q. Gao, G. Feng, D. Dong, and L. Liu, “Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 45, no. 5, pp. 880–887, 2015.

    Article  Google Scholar 

  23. Y. Li and S. Tong, “Hybrid adaptive fuzzy control for uncertain MIMO nonlinear systems with unknown dead-zone,” Inform. Sci., vol. 328, pp. 97–114, 2016.

    Article  Google Scholar 

  24. X. Yang, D. W. C. Ho, J. Lu, and Q. Song, “Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2302–2316, 2015.

    Article  Google Scholar 

  25. Y. Liu, S. Tong, D. Li, and Y. Gao, “Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint,” IEEE Trans. Fuzzy Syst., vol. 24, no. 5, pp. 1147–1158, 2016.

    Article  Google Scholar 

  26. S. Zhang, Z. Wang, D. Ding, H. Dong, F. E. Alsaadi, and T. Hayat, “Nonfragile H fuzzy filtering with randomly occurring gain variations and channel fadings,” IEEE Trans. Fuzzy Syst., vol. 24, no. 3, pp. 505–518, 2016.

    Article  Google Scholar 

  27. T. Wang, Y. Zhang, J. Qiu, and H. Gao, “Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 302–312, 2015.

    Article  Google Scholar 

  28. W.-H. Chen, D. Wei, and W. X. Zheng, “Delayed impulsive control of Takagi-Sugeno fuzzy delay systems,” IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 516–526, 2013.

    Article  Google Scholar 

  29. H. Zhang, H. Yan, T. Liu, and Q. Chen, “Fuzzy controller design for nonlinear impulsive fuzzy systems with time delay,” IEEE Trans. Fuzzy Syst., vol. 19, no. 5, pp. 844–856, 2011.

    Article  Google Scholar 

  30. H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Robust H fuzzy output feedback control with multiple probabilistic delays and multiple missing measurements,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 712–725, 2010.

    Article  Google Scholar 

  31. G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676–697, 2006.

    Article  Google Scholar 

  32. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. SMC-15, no. 1, pp. 116–132, 1985.

    Article  Google Scholar 

  33. I. Saboori and K. Khorasani, “H consensus achievement of multi-agent systems with directed and switching topology networks,” IEEE Trans. Autom. Contr., vol. 59, no. 11, pp. 3104–3109, 2014.

    Article  MathSciNet  Google Scholar 

  34. Z.-H. Guan, B. Hu, M. Chi, D.-X. He, and X.-M. Cheng, “Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control,” Automatica, vol. 50, no. 9, pp. 2415–2418, 2014.

    Article  MathSciNet  Google Scholar 

  35. Z.-H. Guan, D. J. Hill, and J. Yao, “A hybrid impulsive and switching control strategy for synchronizaiton of nonlinear systems and application to Chua’s chaotic circuit,” Int. J. Bifurcation and Chaos, vol. 16, no. 1, pp. 229–238, 2006.

    Article  Google Scholar 

  36. Z.-H. Guan, D. J. Hill, and X. Shen, “On hybrid impulsive and switching systems and application to nonlinear control,” IEEE Trans. Autom. Contr., vol. 50, no. 7, pp. 1058–1062, 2005.

    Article  MathSciNet  Google Scholar 

  37. J. P. Hespanha and A. S. Morse, “Switching between stabilizing controllers,” Automatica, vol. 38, no. 11, pp. 1905–1917, 2002.

    Article  MathSciNet  Google Scholar 

  38. Z. Yang and D. Xu, “Stability analysis and design of impulsive control systems with time delay,” IEEE Trans. Autom. Contr., vol. 52, no. 8, pp. 1448–1454, 2007.

    Article  MathSciNet  Google Scholar 

  39. M. Forti and P. Nistri, “Global convergence of neural networks with discontinuous neuron activations,” IEEE Trans. Circuits Syst. I, vol. 50, no. 11, pp. 1421–1435, 2003.

    Article  MathSciNet  Google Scholar 

  40. B. Hu, Z.-H. Guan, X.-W. Jiang, M. Chi, R.-Q. Liao, “Event-driven multi-consensus of multi-agent networks with repulsive links,” Inform. Sci., vol. 373, pp. 110–123, 2016.

    Article  Google Scholar 

  41. F. Yaghmaie, R. Su, F. Lewis, and L. Xie, “Multi-party consensus of linear heterogeneous multi-agent systems,” IEEE Trans. Autom. Contr., vol. 62, no. 11, pp. 5578–5589, 2017.

    Article  Google Scholar 

  42. S. Jafarzadeh, M. Fadali, and A. Sonbol, “Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part I. Stability analysis,” IEEE Trans. Fuzzy Syst., vol. 19, no. 6, pp. 989–1000, 2011.

    Article  Google Scholar 

  43. S. Jafarzadeh, M. Fadali, and A. Sonbol, “Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part II. Control design,” IEEE Trans. Fuzzy Syst., vol. 19, no. 6, pp. 1001–1013, 2011.

    Article  Google Scholar 

  44. T. M. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40, no. 5, pp. 823–829, 2004.

    Article  MathSciNet  Google Scholar 

  45. H. Ying, “Structure and stability analysis of general Mamdani fuzzy dynamic models,” Int. J. Intelligent Systems, vol. 20, no. 1, pp. 103–125, 2005.

    Article  MathSciNet  Google Scholar 

  46. R.-E. Precup, M.-L. Tomescu, and St. Preitl, “Fuzzy logic control system stability analysis based on Lyapunov’s direct method,” Int. J. Computers, Communication & Contr., vol. 4, no. 4, pp. 415–426, 2009.

    Article  Google Scholar 

  47. A. F. Filippov, “Differential equations with discontinuous right-hand side,” Norwell, MA, USA: Kluwer, 1988.

    Google Scholar 

  48. M. Benchohra, J. Henderson, and S. K. Ntouyas, “Impulsive differential equations and inclusions,” vol. 2, New York: Hindawi Publishing Corporation, Chap. 3, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Theorem 6.1

Proof

Construct a collection of Lyapunov functions as

$$\displaystyle \begin{aligned} {W_i}\left( t \right) = \big\|e_i(t)\big\|, \quad i\in\digamma_q,~ q=1,\cdots,\mathcal{Q}.\end{aligned} $$
(6.20)

First, consider the flow part of (6.11). Let \(\widetilde {\mathcal {D}} W_i(t)\) be the Lie derivative of W i, and ∂W i(t) the generalized gradient of W i at e i, as given by Definition 6.1. Based on (6.11), for any \(\mu _i\in \widetilde {\mathcal {D}}W_i(t)\), t ∈ (t k−1, t k], there exists \(\varrho _i\in \mathcal {K}[\dot {e}_i]\) such that \(\mu _i = \nu _i^\top \varrho _i\), with ν i = ∂W i(t). Note that, for any \(\varrho _i\in \mathcal {K}[\dot {e}_i]\), there also exist △B ∈co[−B (1), B (1)], △C ∈co[−C (1), C (1)], and \(\triangle \tilde {C}\in \mathrm {co}[-\tilde {C}^{(1)},\tilde {C}^{(1)}]\) such that

where \(\tilde {\varXi }(z_q(t),z_q(t-\tau (t)))=-\big (B^{(0)}-B+\triangle B\big ) z_q(t) +\big (C^{(0)}-C+\triangle C\big ) g(z_q(t)) +\big (\tilde {C}^{(0)}-\tilde {C}+\triangle \tilde {C} \big ) g(z_q(t-\tau (t)))\).

Taking \(\nu _i=\dot {e}_i^\top \varPsi (e_i,\dot {e}_i)\), equation \(\mu _i = \nu _i^\top \varrho _i\) gives

(6.21)

Next, the right-hand side of Eq. (6.21) is discussed.

By Assumption 6.1, one has

With \(\sum _{i=1}^N l_{ij}=0\), the coupling term satisfies

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle -\Big[\sum_{j=1}^N l_{ij}\varGamma x_{j}(t)\Big]^\top\varPsi(e_i,\dot{e}_i) \\ &\displaystyle = &\displaystyle -\Big[\sum_{q=1}^{\mathcal{Q}}\sum_{j\in \digamma_q} l_{ij}\varGamma \big(x_{j}(t)-z_q(t)+z_q(t)\big)\Big]^\top\varPsi(e_i,\dot{e}_i)\\ &\displaystyle = &\displaystyle -\Big[\sum_{q=1}^{\mathcal{Q}}\sum_{j\in \digamma_q} l_{ij}\varGamma \big(x_{j}(t)-z_q(t)\big)\Big]^\top\varPsi(e_i,\dot{e}_i) \\ &\displaystyle &\displaystyle \quad +\Big[\sum_{q=1}^{\mathcal{Q}}\sum_{j\in \digamma_q} l_{ij}\varGamma z_q(t)\Big]^\top \varPsi(e_i,\dot{e}_i) \\ &\displaystyle = &\displaystyle -\Big[\sum_{j=1}^N l_{ij}\varGamma e_{j}(t)\Big]^\top\varPsi(e_i,\dot{e}_i).\vspace{-3pt} \end{array} \end{aligned} $$

This gives

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle -\Big[\sum_{j=1}^N l_{ij}\varGamma e_{j}(t)\Big]^\top\varPsi(e_i,\dot{e}_i)\\ &\displaystyle = &\displaystyle -l_{ii}\|e_i(t)\|-\sum_{j=1,j\neq i}^N l_{ij} \big(\varPsi(e_i,\dot{e}_i)^\top\varPsi(e_j,\dot{e}_j)\big)\|e_j(t)\| \\ &\displaystyle \leq &\displaystyle 0.\vspace{-3pt} \end{array} \end{aligned} $$

Contrarily, if

$$\displaystyle \begin{aligned}-l_{ii}\|e_i(t)\|-\sum_{j=1,j\neq i}^N l_{ij} \big(\varPsi(e_i,\dot{e}_i)^\top\varPsi(e_j,\dot{e}_j)\big) \|e_j(t)\|>0,\end{aligned} $$

then

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \sum_{i=1}^N l_{ii}\|e_i(t)\|+\sum_{i=1}^N \sum_{j=1,j\neq i}^N l_{ij} \big(\varPsi(e_i,\dot{e}_i)^\top \varPsi(e_j,\dot{e}_j)\big)\|e_j(t)\| \\ {} &\displaystyle = &\displaystyle \sum_{i=1}^N l_{ii}\|e_i(t)\|+\sum_{i=1}^N \sum_{j=1,j\neq i}^N l_{ji} \big(\varPsi(e_j,\dot{e}_j)^\top \varPsi(e_i,\dot{e}_i)\big)\|e_i(t)\| \\ {} &\displaystyle = &\displaystyle \sum_{i=1}^N \Big[l_{ii} +\sum_{j=1,j\neq i}^N l_{ji} \big(\varPsi(e_j,\dot{e}_j)^\top\varPsi(e_i,\dot{e}_i)\big)\Big] \|e_i(t)\| \\ {} &\displaystyle < &\displaystyle 0.\vspace{-3pt} \end{array} \end{aligned} $$

The above hypothesis implies

$$\displaystyle \begin{aligned}\sum_{i=1}^N \Big[l_{ii} +\sum_{j=1,j\neq i}^N l_{ji} \big(\varPsi(e_j,\dot{e}_j)^\top \varPsi(e_i,\dot{e}_i)\big)\Big]<0,\end{aligned} $$

which contradicts with the fact that \(\sum _{j=1}^N l_{ij}=0\) with l ii > 0 and l ij = l ji ≤ 0 (j ≠ i), i, j = 1, 2, ⋯ , N.

Under Assumptions 6.1 and 6.2, it also follows that

Moreover, one has

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle -\Big\{\sum_{\iota =1}^2 \theta_{i\iota}(t) \big[p_{i_k}^\iota {e_i}(t)+ h_{i_k}^\iota \mathrm{sgn}\big({e_i}(t)\big)\big]\Big\}^\top\varPsi(e_i,\dot{e}_i) \\ &\displaystyle = &\displaystyle -\sum_{\iota =1}^2 \theta_{i\iota}(t) \Big(p_{i_k}^\iota \|e_i(t)\|+ h_{i_k}^\iota \Big) \\ &\displaystyle \leq &\displaystyle -\min_{r}\min\{p_{r}^1,p_{r}^2\}\|e_i(t)\|-\min_{r}\min\{h_{r}^1,h_{r}^2\}.\vspace{-3pt} \end{array} \end{aligned} $$

Hence, Eq. (6.21) together with the preceding relationships gives

$$\displaystyle \begin{aligned} \max \widetilde{\mathcal{D}}{{W}_i}\left( t \right)\big|{}_{\text{(6.11)}} \leq -\alpha_i {W_i}\left( t \right) +\beta_i {W_i}\left( t-\tau(t) \right)+d_i^q,\end{aligned} $$
(6.22)

where t ∈ (t k−1, t k], α i, β i and \(d_i^q\) are as given by (6.13).

In the following, the impulse effect in (6.11) is analyzed. Similarly, there also exists △C ∈co[−C (1), C (1)] such that

Then with Assumption 6.2, for any \(\varOmega _i\in \mathcal {K}[W_i(t_k^+)]\), one can write

where \(f_i^q=\big \|C^{(0)}+\triangle C \big \| \varepsilon _q\).

With \(\sigma _i^q=1-\min \limits _r\min \{\nu _{r}^1,\nu _{r}^2\}+l_g \big \|C^{(0)}+\triangle C \big \|\), it follows

$$\displaystyle \begin{aligned} \max W_i(t_k^+)\big|{}_{\text{(6.11)}}\leq \sigma_i^q W_i(t_k)+f_i^q. \end{aligned} $$
(6.23)

Take the delayed impulsive differential equation

$$\displaystyle \begin{aligned} \left\{ \begin{array}{lll} \dot{V}_i(t) \;\; = -\alpha_i V_i(t) + \beta_i V_i(t-\tau(t)) +d_i^q, \\ \qquad \qquad \qquad t\in (t_{k-1},t_k],\\ V_i(t_k^+) = \sigma_i^q V_i(t_k)+f_i^q, \\ V_i(\vartheta) \;\,= \|\psi_i(\vartheta)-z_q(\vartheta)\|, \;\; \vartheta\in [t_0-\tau,t_0], \end{array} \right. \end{aligned} $$
(6.24)

as a comparison equation, k = 1, 2, ⋯, i = 1, 2, ⋯ , N. According to the comparison principle for delayed impulsive differential equations [5, 12, 38], it follows that W i(t) ≤ V i(t) for all t ≥ t 0.

Then, the solution V i(t) of dynamical system (6.24) is discussed. For t ∈ (t k−1, t k], one has

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} V_i(t) = e^{-\alpha_i (t-t_{k-1})}V_i(t_{k-1}^+) \qquad \qquad \qquad \qquad \;\, \\ + \int_{t_{k-1}}^t e^{-\alpha_i (t-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s \\ = \sigma_i^q e^{-\alpha_i (t-t_{k-1})}V_i(t_{k-1}) +e^{-\alpha_i (t-t_{k-1})} f_i^q \\ + \int_{t_{k-1}}^t e^{-\alpha_i (t-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s. \end{array} \end{aligned} $$
(6.25)

That is,

$$\displaystyle \begin{aligned} \begin{array}{rcl} V_i(t_k) = \sigma_i^q e^{-\alpha_i (t_k-t_{k-1})}V_i(t_{k-1}) +e^{-\alpha_i (t_k-t_{k-1})} f_i^q \\ + \int_{t_{k-1}}^{t_k} e^{-\alpha_i (t_k-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s. \end{array} \end{aligned} $$

For k = 1, with \(V_i(t_0^+)=V_i(t_0)\), it follows

$$\displaystyle \begin{aligned} \begin{array}{rcl} V_i(t_1) &\displaystyle =&\displaystyle \sigma_i^q e^{-\alpha_i (t_1-t_{0})}V_i(t_{0})+e^{-\alpha_i (t_1-t_{0})} f_i^q \\ &\displaystyle &\displaystyle + \int_{t_{0}}^{t_1} e^{-\alpha_i (t_1-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s. \end{array} \end{aligned} $$

For k = 2, one has

$$\displaystyle \begin{aligned} \begin{array}{rcl} V_i(t_2)= \sigma_i^q e^{-\alpha_i (t_2-t_{1})}\Big[\sigma_i^q e^{-\alpha_i (t_1-t_{0})}V_i(t_{0}) \qquad \qquad \quad \\ +e^{-\alpha_i (t_1-t_{0})} f_i^q + \int_{t_{0}}^{t_1} e^{-\alpha_i (t_1-s)}\qquad \qquad \quad \; \\ \cdot\big(\beta_i V_i(s-\tau(s))+d_i^q \big) \mathrm{d}s\Big]+e^{-\alpha_i (t_2-t_{1})} f_i^q\quad \\ + \int_{t_{1}}^{t_2} e^{-\alpha_i (t_2-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s\quad \;\;\, \\ =(\sigma_i^q)^2 e^{-\alpha_i (t_2-t_0)}V_i(t_0) +(\sigma_i^q)^2\Big[(\sigma_i^q)^{-1}e^{-\alpha_i (t_2-t_0)} \\ +(\sigma_i^q)^{-2}e^{-\alpha_i (t_2-t_{1})} \Big]f_i^q+\sigma_i^q e^{-\alpha_i (t_2-t_{1})} \quad \; \\ \cdot\int_{t_{0}}^{t_1} e^{-\alpha_i (t_1-s)}\big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s\quad \\ + \int_{t_{1}}^{t_2} e^{-\alpha_i (t_2-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s. \;\,\vspace{-3pt} \end{array} \end{aligned} $$

For k = 3, it follows

$$\displaystyle \begin{aligned} \begin{array}{rcl} V_i(t_3) = (\sigma_i^q)^3 e^{-\alpha_i (t_3-t_0)}V_i(t_0) +(\sigma_i^q)^3 \Big[(\sigma_i^q)^{-1}e^{-\alpha_i (t_3-t_0)} \\ +(\sigma_i^q)^{-2} e^{-\alpha_i (t_3-t_{1})}+(\sigma_i^q)^{-3} e^{-\alpha_i (t_3-t_{2})} \Big]f_i^q \\ +\sigma_i^q e^{-\alpha_i (t_3-t_2)} \Big\{\sigma_i^q e^{-\alpha_i (t_2-t_{1})}\qquad \qquad \quad \;\;\, \\ \cdot\int_{t_{0}}^{t_1} e^{-\alpha_i (t_1-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s \quad \;\\ + \int_{t_{1}}^{t_2} e^{-\alpha_i (t_2-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s\Big\}\;\; \\ + \int_{t_{2}}^{t_3} e^{-\alpha_i (t_3-s)} \big[\beta_i V_i(s-\tau(s))+d_i^q \big] \mathrm{d}s. \;\;\;\vspace{-3pt} \end{array} \end{aligned} $$

Overall, it can be verified that for any t ∈ (t k−1, t k],

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} V_i(t) &\displaystyle = &\displaystyle \varPhi(t,t_0)V_i(t_0)+(\sigma_i^q)^{\mathbb{N}(t,t_0)} \\ &\displaystyle &\displaystyle \cdot\Big[\sum_{r=1}^{\mathbb{N}(t,t_0)}(\sigma_i^q)^{-r} e^{-\alpha_i(t-t_{r-1})}\Big]f_i^q \\ &\displaystyle &\displaystyle +\int_{t_0}^t \varPhi(t,s)\Big[\beta_i V_i(s-\tau(s))+d_i^q \Big]\mathrm{d}s, \end{array} \end{aligned} $$
(6.26)

where \(\varPhi (t,t_{0})=(\sigma _i^q)^{\mathbb {N}(t,t_{0})} e^{-\alpha _i (t-t_{0})}\), \(\mathbb {N}(t,t_0)\) denotes the number of impulses during time interval (t 0, t].

According to Definition 6.2, with the average impulsive intermittence τ a > 0, α i > 0, and \(0<\sigma _i^q<1\), the following three relationships hold.

$$\displaystyle \begin{aligned}(\sigma_i^q)^{\mathbb{N}(t,t_{0})}\leq (\sigma_i^q)^{-\mathbb{N}_0}e^{\frac{\ln \sigma_i^q}{\tau_a} (t-t_0)},\end{aligned}$$
$$\displaystyle \begin{aligned} \begin{array}{rcl} \varPhi(t,t_0) &\displaystyle \leq &\displaystyle e^{-\alpha_i (t-t_0)} (\sigma_i^q)^{\frac{(t-t_0)}{\tau_a}-\mathbb{N}_0} \\ &\displaystyle \leq &\displaystyle (\sigma_i^q)^{-\mathbb{N}_0}e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (t-t_0)}, \end{array} \end{aligned} $$

and

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle (\sigma_i^q)^{\mathbb{N}(t,t_0)}\Big[\sum_{r=1}^{\mathbb{N}(t,t_0)}(\sigma_i^q)^{-r} e^{-\alpha_i(t-t_{r-1})}\Big] \\ &\displaystyle \leq &\displaystyle (\sigma_i^q)^{\mathbb{N}(t,t_0)} \sum_{r=1}^{\mathbb{N}(t,t_0)}(\sigma_i^q)^{-r} \\ &\displaystyle = &\displaystyle (\sigma_i^q)^{\mathbb{N}(t,t_0)} (\sigma_i^q)^{-1}\frac{1-(\sigma_i^q)^{-\mathbb{N}(t,t_0)} }{1-(\sigma_i^q)^{-1}} \\ &\displaystyle \leq &\displaystyle \frac{1}{1-\sigma_i^q}-(1-\sigma_i^q)^{-1}(\sigma_i^q)^{\mathbb{N}_1}e^{\frac{\ln \sigma_i^q}{\tau_a} (t-t_0)} \\ &\displaystyle \leq &\displaystyle \frac{1-(\sigma_i^q)^{\mathbb{N}_1}}{1-\sigma_i^q}, \end{array} \end{aligned} $$

where the last inequality is due to \(\ln \sigma _i^q<0\).

Thus for any t ∈ (t k−1, t k], Eq. (6.26) gives

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} V_i(t) &\displaystyle \leq &\displaystyle (\sigma_i^q)^{-\mathbb{N}_0}e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (t-t_0)}V_i(t_0) \\ &\displaystyle &\displaystyle +\tilde{f}_i^q +\int_{t_0}^t (\sigma_i^q)^{-\mathbb{N}_0}e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (t-s)} \\ &\displaystyle &\displaystyle \cdot\big[\beta_i V_i(s-\tau(s))\big]\mathrm{d}s, \end{array} \end{aligned} $$
(6.27)

where \(\tilde {f}_i^q=\frac {1-(\sigma _i^q)^{\mathbb {N}_1}}{1-\sigma _i^q} f_i^q+\frac {(\sigma _i^q)^{-\mathbb {N}_0} }{\alpha _i}d_i^q\).

Hence, for all t ≥ t 0, from (6.27) it follows that

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} V_i(t) \leq \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0}e^{-\tilde{\alpha}_i (t-t_0)}+\frac{\tilde{f}_i^q}{\alpha_i(\sigma_i^q)^{\mathbb{N}_0}-\beta_i}, \end{array} \end{aligned} $$
(6.28)

where \(\tilde {\psi }_i=\sup _{t_0-\bar {\tau }\leq \vartheta \leq t_0} \|\psi _i(\vartheta )-z_q(\vartheta )\|\), and \(\tilde {\alpha }_i\) is the unique solution of algebra equation

$$\displaystyle \begin{aligned} \tilde{\alpha}_i-\Big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\Big) + (\sigma_i^q)^{-\mathbb{N}_0} \beta_i e^{\tilde{\alpha}_i\bar{\tau}}=0. \end{aligned} $$
(6.29)

It can be verified that \(\tilde {\alpha }_i>0\) since one has \(\big (\alpha _i-\frac {\ln \sigma _i^q}{\tau _a}\big )- (\sigma _i^q)^{-\mathbb {N}_0} \beta _i>0\) based on condition (6.13).

It is now to verify the relationship (6.28) by a contradiction [12, 38].

If (6.28) does not hold, then there exists T 1 > 0 such that

$$\displaystyle \begin{aligned}V_i(T_1) \geq \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0}e^{-\tilde{\alpha}_i (T_1-t_0)} +\frac{\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i}, \end{aligned}$$
$$\displaystyle \begin{aligned}V_i(t) < \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0}e^{-\tilde{\alpha}_i (t-t_0)}+\frac{\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i}, \end{aligned}$$

for all t < T 1.

Based on inequality (6.27), one has

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} V_i(T_1) \leq \tilde{\psi}_i(\sigma_i^q)^{-\mathbb{N}_0}e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (T_1-t_0)} +\tilde{f}_i^q \\ +\int_{t_0}^{T_1} (\sigma_i^q)^{-\mathbb{N}_0}e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (T_1-s)}\quad \\ \cdot\big[\beta_i V_i(s-\tau(s))\big]\mathrm{d}s \\ \leq e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (T_1-t_0)}\Big[\tilde{\psi}_i(\sigma_i^q)^{-\mathbb{N}_0}\quad \quad \\ +\frac{\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i} \Big]\qquad \quad \;\; \\ + e^{-\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (T_1-t_0)}\qquad \qquad \qquad \, \\ \cdot\int_{t_0}^{T_1} (\sigma_i^q)^{-\mathbb{N}_0}e^{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(s-t_0)}\quad \;\;\, \\ \cdot\Big[\beta_i \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0}e^{-\tilde{\alpha}_i (s-\tau(s)-t_0)}\qquad \\ +\frac{\beta_i\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i} \Big]\mathrm{d}s. \qquad \, \end{array} \end{aligned} $$
(6.30)

Due to the fact that \(\alpha _i-\frac {\ln \sigma _i^q}{\tau _a}= \tilde {\alpha }_i+ (\sigma _i^q)^{-\mathbb {N}_0} \beta _i e^{\tilde {\alpha }_i\kappa }>(\sigma _i^q)^{-\mathbb {N}_0} \beta _i\), one gets

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \int_{t_0}^{T_1} (\sigma_i^q)^{-\mathbb{N}_0}e^{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(s-t_0)}\Big[\beta_i \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0} \\ &\displaystyle &\displaystyle \quad \cdot e^{-\tilde{\alpha}_i (s-\tau(s)-t_0)}+\frac{\beta_i\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i} \Big]\mathrm{d}s \\ &\displaystyle < &\displaystyle \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0} \Big[e^{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}-\tilde{\alpha}_i\big)(T_1-t_0)} -1\Big] \\ &\displaystyle &\displaystyle +(\sigma_i^q)^{-\mathbb{N}_0}\beta_i \frac{\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i} \\ &\displaystyle &\displaystyle \quad \cdot\frac{e^{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (T_1-t_0)} -1}{\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}}\\ &\displaystyle < &\displaystyle \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0} \Big[e^{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}-\tilde{\alpha}_i\big)(T_1-t_0)} -1\Big] \\ &\displaystyle &\displaystyle + \Big[e^{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big) (T_1-t_0)} -1\Big] \\ &\displaystyle &\displaystyle \quad \cdot\frac{\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i}\,. \end{array} \end{aligned} $$

Substituting the above inequality into inequality (6.30) gives

$$\displaystyle \begin{aligned}V_i(T_1) < \tilde{\psi}_i (\sigma_i^q)^{-\mathbb{N}_0}e^{-\tilde{\alpha}_i (t-t_0)}+\frac{\tilde{f}_i^q}{\big(\alpha_i-\frac{\ln \sigma_i^q}{\tau_a}\big)(\sigma_i^q)^{\mathbb{N}_0}-\beta_i},\end{aligned}$$

which leads to the contradiction.

Therefore, with \(\tilde {\alpha }_i >0\) and W i(t) ≤ V i(t) (t ≥ t 0), for any ε > 0, there exists a positive constant \(\mathcal {T}_i\) such that W i(t) ≤ ε + ξ q, \(\forall t>\mathcal {T}_i\), where ξ q is given by (6.12), i ∈ гq, \(q=1,\cdots ,\mathcal {Q}\). That is, multisynchronization of MINNs (6.3) is achieved asymptotically in regard to master system (6.6). This completes the proof. □

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guan, ZH., Hu, B., Shen, X.(. (2019). Hybrid Memristor-Based Impulsive Neural Networks. In: Introduction to Hybrid Intelligent Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-02161-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02161-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02160-3

  • Online ISBN: 978-3-030-02161-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics