Skip to main content

Measuring Collaborative Emergent Behavior in Multi-agent Reinforcement Learning

  • Conference paper
  • First Online:
Human Systems Engineering and Design (IHSED 2018)

Abstract

Multi-agent reinforcement learning (RL) has important implications for the future of human-agent teaming. We show that improved performance with multi-agent RL is not a guarantee of the collaborative behavior thought to be important for solving multi-agent tasks. To address this, we present a novel approach for quantitatively assessing collaboration in continuous spatial tasks with multi-agent RL. Such a metric is useful for measuring collaboration between computational agents and may serve as a training signal for collaboration in future RL paradigms involving humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 January 2019

    The original version of the book was inadvertently published with incorrect copyright names in Chapters “Measuring collaborative emergent behavior in multi-agent reinforcement learning”.

Notes

  1. 1.

    In this case, the dynamics of a double pendulum were used to specify the movement of the modified predator.

References

  1. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Independent reinforcement learners in cooperative markov games: a survey regarding coordination problems. Knowl. Eng. Rev. 27, 1–31 (2012)

    Article  Google Scholar 

  2. Sen, S., Sekaran, M., Hale, J., et al.: Learning to coordinate without sharing information. In: AAAI, pp. 426–431 (1994)

    Google Scholar 

  3. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  4. Lowe, R., Wu, Y., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 6382–6393. Curran Associates, Inc. (2017)

    Google Scholar 

  5. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual Multi-Agent Policy Gradients. arXiv:1705.08926 [cs] (2017)

  6. Matignon, L., Laurent, G., Le Fort-Piat, N.: Hysteretic q-learning: an algorithm for decentralized reinforcement learning in cooperative multi-agent teams. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 64–69 (2007)

    Google Scholar 

  7. Lauer, M., Riedmiller, M.: An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In: Proceedings of the Seventeenth International Conference on Machine Learning. Citeseer (2000)

    Google Scholar 

  8. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. In: AAAI/IAAI 1998, pp. 746–752 (1998)

    Google Scholar 

  9. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI Gym. arXiv:1606.01540 [cs] (2016)

  10. Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M., Munch, S.: Detecting causality in complex ecosystems. Science 1227079 (2012)

    Google Scholar 

  11. Parasuraman, R., Sheriden, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30, 286–297 (2000)

    Article  Google Scholar 

  12. Rovira, E., McGarry, K., Parasuraman, R.: Effects of imperfect automation on decision making in a simulated command and control task. Hum. Factors 49, 76–87 (2007)

    Article  Google Scholar 

  13. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 19, 91–95 (2004)

    Article  Google Scholar 

Download references

Acknowledgements and Disclosure

This research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-18-2-0058. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean L. Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barton, S.L., Waytowich, N.R., Zaroukian, E., Asher, D.E. (2019). Measuring Collaborative Emergent Behavior in Multi-agent Reinforcement Learning. In: Ahram, T., Karwowski, W., Taiar, R. (eds) Human Systems Engineering and Design. IHSED 2018. Advances in Intelligent Systems and Computing, vol 876. Springer, Cham. https://doi.org/10.1007/978-3-030-02053-8_64

Download citation

Publish with us

Policies and ethics