Skip to main content

Robotic System for Active-Passive Strength Therapy

  • Conference paper
  • First Online:
Human Systems Engineering and Design (IHSED 2018)

Abstract

The mobility recovery in patients with some trauma or stroke is the research objective to develop new rehabilitation technologies. Some technologies aim to improve the comfort and reduce the rehabilitation timing and cost. This work presents a mechatronic system able to perform passive therapy and strength training (SARPA), in order to this improvement. In the design stage, simulations are implemented to observe the system model behavior. The simulation uses the shoulder adduction and abduction motions. Additionally, model constrained force and disturbances are analyzed. In this work, the model behavior is obtained to develop the suitable control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobkin, B.H.: Strategies for stroke rehabilitation. Lancet Neurol. 3(9), 528–536 (2004)

    Article  Google Scholar 

  2. Loureiro, R.C.V., et al.: Advances in upper limb stroke rehabilitation: a technology push. Med. Biol. Eng. Comput. 49(10), 1103 (2011)

    Article  Google Scholar 

  3. Masiero, S., et al.: Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88(2), 142–149 (2007)

    Article  Google Scholar 

  4. Levin, M.F., et al.: Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95(3), 415–425 (2015)

    Article  Google Scholar 

  5. Squeri, V., et al.: Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 312–325 (2014)

    Article  Google Scholar 

  6. Ozgur, A.G., et al.: Iterative design of an upper limb rehabilitation game with tangible robots. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. ACM (2018)

    Google Scholar 

  7. Novak, D., et al.: Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. J. Neuroeng. Rehabil. 11(1), 64 (2014)

    Article  Google Scholar 

  8. Brokaw, E.B., et al.: Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil. Neural Repair 28(4), 367–376 (2014)

    Article  Google Scholar 

  9. Liao, W.-W., et al.: Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin. Rehabil. 26(2), 111–120 (2012)

    Article  Google Scholar 

  10. Basteris, A., et al.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. Neuroeng. Rehabil. 11(1), 111 (2014)

    Article  Google Scholar 

  11. Rahman, M.H., et al.: Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 33(1), 19–39 (2015)

    Article  Google Scholar 

  12. Perry, J.C., et al.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    Article  Google Scholar 

  13. Michmizos, K.P., et al.: Robot-aided neurorehabilitation: a pediatric robot for ankle rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 1056–1067 (2015)

    Article  Google Scholar 

  14. Chen, S.-H., et al.: Assistive control system for upper limb rehabilitation robot. IEEE Trans. Neural Syst. Rehabil. Eng. 24(11), 1199–1209 (2016)

    Article  Google Scholar 

  15. Ugurlu, B., et al.: Proof of concept for robot-aided upper limb rehabilitation using disturbance observers. IEEE Trans. Hum.-Mach. Syst. 45(1), 110–118 (2015)

    Article  Google Scholar 

  16. Hamar, D.: Universal linear motor driven leg press dynamometer and concept of serial stretch loading. Eur. J. Transl. Myol. 25(4), 215 (2015)

    Article  Google Scholar 

  17. Valdivia, C.H.G., et al.: Modelado y Simulación de un Robot Terapéutico para la Rehabilitación de Miembros Inferiores. Rev. Ing. Bioméd. 7(14), 42 (2013)

    Google Scholar 

  18. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, Hoboken (2008)

    Book  Google Scholar 

  19. Barrientos, A.: Fundamentos de robótica. No. 681.5 629.892. e-libro, Corp. (2007)

    Google Scholar 

  20. Newton’s Second Law of Motion. https://www.math24.net/newtons-second-law-motion/

  21. Simscape Multibody. https://www.mathworks.com/products/simmechanics.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Cortes Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres, E.C., Campos, A.A., Martins, D., Bock, E. (2019). Robotic System for Active-Passive Strength Therapy. In: Ahram, T., Karwowski, W., Taiar, R. (eds) Human Systems Engineering and Design. IHSED 2018. Advances in Intelligent Systems and Computing, vol 876. Springer, Cham. https://doi.org/10.1007/978-3-030-02053-8_150

Download citation

Publish with us

Policies and ethics