Skip to main content

Leg Veins

  • Chapter
  • First Online:
Evidence-Based Procedural Dermatology

Abstract

There are multiple treatment modalities to address unwanted and/or symptomatic leg veins. When selecting treatment, variations in vessel size, depth, and type must be taken into consideration. Treatment options include sclerotherapy, endovenous ablation with laser or radiofrequency, ambulatory phlebectomy, transcutaneous lasers and intense pulsed light systems, as well as the more recently developed cyanoacrylate closure and mechanochemical ablation. This chapter reviews the effectiveness, safety, and appropriate selection of the above-listed procedures for treating leg veins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottenfeld D. The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol. 2005;15(3):175–84.

    Article  PubMed  Google Scholar 

  2. Callam MJ. Epidemiology of varicose veins. Br J Surg. 1994;81(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  3. Evans CJ, Fowkes FG, Ruckley CV, Lee AJ. Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J Epidemiol Community Health. 1999;53(3):149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabe E, Guex JJ, Puskas A, Scuderi A, Fernandez QF. Epidemiology of chronic venous disorders in geographically diverse populations: results from the Vein Consult Program. Int Angiol. 2012;31(2):105–15.

    CAS  PubMed  Google Scholar 

  5. Robertson L, Evans C, Fowkes FG. Epidemiology of chronic venous disease. Phlebology. 2008;23(3):103–11.

    Article  CAS  PubMed  Google Scholar 

  6. Cornu-Thenard A, Boivin P, Baud JM, De Vincenzi I, Carpentier PH. Importance of the familial factor in varicose disease. Clinical study of 134 families. J Dermatol Surg Oncol. 1994;20(5):318–26.

    Article  CAS  PubMed  Google Scholar 

  7. Alexander CJ. The epidemiology of varicose veins. Med J Aust. 1972;1(5):215–8.

    Article  CAS  PubMed  Google Scholar 

  8. Coon WW, Willis PW 3rd, Keller JB. Venous thromboembolism and other venous disease in the Tecumseh community health study. Circulation. 1973;48(4):839–46.

    Article  CAS  PubMed  Google Scholar 

  9. Schultz-Ehrenburg UWN, Matthes U, Hirche H. New epidemiological findings with regard to initial stages of varicose veins (Bochum study I-III). In: Raymond-Martimbeau RP P, Zummo M, editors. Phlegologie ‘92. Paris: John Libbey Eurotext; 1992. p. 234–6.

    Google Scholar 

  10. Laurikka JO, Sisto T, Tarkka MR, Auvinen O, Hakama M. Risk indicators for varicose veins in forty- to sixty-year-olds in the Tampere varicose vein study. World J Surg. 2002;26(6):648–51.

    Article  PubMed  Google Scholar 

  11. Abramson JH, Hopp C, Epstein LM. The epidemiology of varicose veins. A survey in western Jerusalem. J Epidemiol Community Health. 1981;35(3):213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sisto T, Reunanen A, Laurikka J, Impivaara O, Heliovaara M, Knekt P, et al. Prevalence and risk factors of varicose veins in lower extremities: mini-Finland health survey. Eur J Surg. 1995;161(6):405–14.

    CAS  PubMed  Google Scholar 

  13. Weiss RA, Weiss MA. Resolution of pain associated with varicose and telangiectatic leg veins after compression sclerotherapy. J Dermatol Surg Oncol. 1990;16(4):333–6.

    Article  CAS  PubMed  Google Scholar 

  14. Goldman MP, Guex JJ, Weiss RA. Sclerotherapy: treatment of varicose and telangiectactic leg veins. 5th ed. Phildelphia: Elsevier Saunders; 2011.

    Google Scholar 

  15. Weiss RA, Weiss MA, Beasley KL. Sclerotherapy and vein treatment. 2nd ed. New York: McGraw Medical; 2012.

    Google Scholar 

  16. Whiteley MS. Glue, steam and Clarivein – best practice techniques and evidence. Phlebology. 2015;30(2 Suppl):24–8.

    Article  PubMed  Google Scholar 

  17. Kahle B, Leng K. Efficacy of sclerotherapy in varicose veins – prospective, blinded, placebo-controlled study. Dermatol Surg. 2004;30(5):723–8; discussion 8

    PubMed  Google Scholar 

  18. Rabe E, Otto J, Schliephake D, Pannier F. Efficacy and safety of great saphenous vein sclerotherapy using standardised polidocanol foam (ESAF): a randomised controlled multicentre clinical trial. Eur J Vasc Endovasc Surg. 2008;35(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Jing Z, Schliephake DE, Otto J, Malouf GM, Gu YQ. Efficacy and safety of Aethoxysklerol(R) (polidocanol) 0.5%, 1% and 3% in comparison with placebo solution for the treatment of varicose veins of the lower extremities in Chinese patients (ESA-China Study). Phlebology. 2012;27(4):184–90.

    Article  CAS  PubMed  Google Scholar 

  20. Rabe E, Schliephake D, Otto J, Breu FX, Pannier F. Sclerotherapy of telangiectases and reticular veins: a double-blind, randomized, comparative clinical trial of polidocanol, sodium tetradecyl sulphate and isotonic saline (EASI study). Phlebology. 2010;25(3):124–31.

    Article  CAS  PubMed  Google Scholar 

  21. Carlin MC, Ratz JL. Treatment of telangiectasia: comparison of sclerosing agents. J Dermatol Surg Oncol. 1987;13(11):1181–4.

    Article  CAS  PubMed  Google Scholar 

  22. Hobbs JT. Surgery and sclerotherapy in the treatment of varicose veins. A random trial. Arch Surg. 1974;109(6):793–6.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz L, Maxwell H. Sclerotherapy for lower limb telangiectasias. Cochrane Database Syst Rev. 2011;12:Cd008826.

    Google Scholar 

  24. Tisi PV, Beverley C, Rees A. Injection sclerotherapy for varicose veins. Cochrane Database Syst Rev. 2006;4:Cd001732.

    Google Scholar 

  25. Peterson JD, Goldman MP, Weiss RA, Duffy DM, Fabi SG, Weiss MA, et al. Treatment of reticular and telangiectatic leg veins: double-blind, prospective comparative trial of polidocanol and hypertonic saline. Dermatol Surg. 2012;38(8):1322–30.

    Article  CAS  PubMed  Google Scholar 

  26. Norris MJ, Carlin MC, Ratz JL. Treatment of essential telangiectasia: effects of increasing concentrations of polidocanol. J Am Acad Dermatol. 1989;20(4):643–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bush R, Bush P. Evaluation of sodium tetradecyl sulfate and polidocanol as sclerosants for leg telangiectasias based on histological evaluation with clinical correlation. Phlebology. 2017;32(7):496–500.

    Article  PubMed  Google Scholar 

  28. Hamel-Desnos C, Ouvry P, Benigni JP, Boitelle G, Schadeck M, Desnos P, et al. Comparison of 1% and 3% polidocanol foam in ultrasound guided sclerotherapy of the great saphenous vein: a randomised, double-blind trial with 2 year-follow-up. “The 3/1 Study”. Eur J Vasc Endovasc Surg. 2007;34(6):723–9; discussion 30

    Article  CAS  PubMed  Google Scholar 

  29. Goldman MP. Treatment of varicose and telangiectatic leg veins: double-blind prospective comparative trial between aethoxyskerol and sotradecol. Dermatol Surg. 2002;28(1):52–5.

    PubMed  Google Scholar 

  30. Hamel-Desnos C, Allaert FA. Liquid versus foam sclerotherapy. Phlebology. 2009;24(6):240–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ouvry P, Allaert FA, Desnos P, Hamel-Desnos C. Efficacy of polidocanol foam versus liquid in sclerotherapy of the great saphenous vein: a multicentre randomised controlled trial with a 2-year follow-up. Eur J Vasc Endovasc Surg. 2008;36(3):366–70.

    Article  CAS  PubMed  Google Scholar 

  32. Ukritmanoroat T. Comparison of efficacy and safety between foam sclerotherapy and conventional sclerotherapy: a controlled clinical trial. J Med Assoc Thai. 2011;94(Suppl 2):S35–40.

    PubMed  Google Scholar 

  33. Yamaki T, Nozaki M, Iwasaka S. Comparative study of duplex-guided foam sclerotherapy and duplex-guided liquid sclerotherapy for the treatment of superficial venous insufficiency. Dermatol Surg. 2004;30(5):718–22; discussion 22

    PubMed  Google Scholar 

  34. Park SW, Yun IJ, Hwang JJ, Lee SA, Kim JS, Chee HK, et al. Fluoroscopy-guided endovenous sclerotherapy using a microcatheter prior to endovenous laser ablation: comparison between liquid and foam sclerotherapy for varicose tributaries. Korean J Radiol. 2014;15(4):481–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nijsten T, van den Bos RR, Goldman MP, Kockaert MA, Proebstle TM, Rabe E, et al. Minimally invasive techniques in the treatment of saphenous varicose veins. J Am Acad Dermatol. 2009;60(1):110–9.

    Article  PubMed  Google Scholar 

  36. Weiss MA, Hsu JT, Neuhaus I, Sadick NS, Duffy DM. Consensus for sclerotherapy. Dermatol Surg. 2014;40(12):1309–18.

    Article  CAS  PubMed  Google Scholar 

  37. Bernstein EF, Kornbluth S, Brown DB, Black J. Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser. Dermatol Surg. 1999;25(4):316–20.

    Article  CAS  PubMed  Google Scholar 

  38. Fournier N, Brisot D, Mordon S. Treatment of leg telangiectases with a 532 nm KTP laser in multipulse mode. Dermatol Surg. 2002;28(7):564–71.

    CAS  PubMed  Google Scholar 

  39. McMeekin TO. Treatment of spider veins of the leg using a long-pulsed Nd:YAG laser (Versapulse) at 532 nm. J Cutan Laser Ther. 1999;1(3):179–80.

    Article  CAS  PubMed  Google Scholar 

  40. West TB, Alster TS. Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg. 1998;24(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  41. Woo WK, Jasim ZF, Handley JM. 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration. Dermatol Surg. 2003;29(12):1176–80; discussion 80

    PubMed  Google Scholar 

  42. Massey RA, Katz BE. Successful treatment of spider leg veins with a high-energy, long-pulse, frequency-doubled neodymium:YAG laser (HELP-G). Dermatol Surg. 1999;25(9):677–80.

    Article  CAS  PubMed  Google Scholar 

  43. Ozden MG, Bahcivan M, Aydin F, Senturk N, Bek Y, Canturk T, et al. Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases. J Dermatolog Treat. 2011;22(3):162–6.

    Article  PubMed  Google Scholar 

  44. Spendel S, Prandl EC, Schintler MV, Siegl A, Wittgruber G, Hellbom B, et al. Treatment of spider leg veins with the KTP (532 nm) laser – a prospective study. Lasers Surg Med. 2002;31(3):194–201.

    Article  PubMed  Google Scholar 

  45. Bernstein EF, Lee J, Lowery J, Brown DB, Geronemus R, Lask G, et al. Treatment of spider veins with the 595 nm pulsed-dye laser. J Am Acad Dermatol. 1998;39(5 Pt 1):746–50.

    Article  CAS  PubMed  Google Scholar 

  46. Hsia J, Lowery JA, Zelickson B. Treatment of leg telangiectasia using a long-pulse dye laser at 595 nm. Lasers Surg Med. 1997;20(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  47. Reichert D. Evaluation of the long-pulse dye laser for the treatment of leg telangiectasias. Dermatol Surg. 1998;24(7):737–40.

    Article  CAS  PubMed  Google Scholar 

  48. Goldman MP, Fitzpatrick RE. Pulsed-dye laser treatment of leg telangiectasia: with and without simultaneous sclerotherapy. J Dermatol Surg Oncol. 1990;16(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  49. Hohenleutner U, Walther T, Wenig M, Baumler W, Landthaler M. Leg telangiectasia treatment with a 1.5 ms pulsed dye laser, ice cube cooling of the skin and 595 vs 600 nm: preliminary results. Lasers Surg Med. 1998;23(2):72–8.

    Article  CAS  PubMed  Google Scholar 

  50. Kono T, Yamaki T, Ercocen AR, Fujiwara O, Nozaki M. Treatment of leg veins with the long pulse dye laser using variable pulse durations and energy fluences. Lasers Surg Med. 2004;35(1):62–7.

    Article  PubMed  Google Scholar 

  51. McDaniel DH, Ash K, Lord J, Newman J, Adrian RM, Zukowski M. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  52. Trelles MA, Allones I, Alvarez J, Velez M, Martin-Vazquez M, Trelles OR, et al. The 800-nm diode laser in the treatment of leg veins: assessment at 6 months. J Am Acad Dermatol. 2006;54(2):282–9.

    Article  PubMed  Google Scholar 

  53. Passeron T, Olivier V, Duteil L, Desruelles F, Fontas E, Ortonne JP. The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol. 2003;48(5):768–74.

    Article  PubMed  Google Scholar 

  54. Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3–3 mm leg veins. Dermatol Surg. 2002;28(3):224–30.

    PubMed  Google Scholar 

  55. Weiss RA, Weiss MA. Early clinical results with a multiple synchronized pulse 1064 NM laser for leg telangiectasias and reticular veins. Dermatol Surg. 1999;25(5):399–402.

    Article  CAS  PubMed  Google Scholar 

  56. Sadick NS. Long-term results with a multiple synchronized-pulse 1064 nm Nd:YAG laser for the treatment of leg venulectasias and reticular veins. Dermatol Surg. 2001;27(4):365–9.

    CAS  PubMed  Google Scholar 

  57. Omura NE, Dover JS, Arndt KA, Kauvar AN. Treatment of reticular leg veins with a 1064 nm long-pulsed Nd:YAG laser. J Am Acad Dermatol. 2003;48(1):76–81.

    Article  PubMed  Google Scholar 

  58. Rogachefsky AS, Silapunt S, Goldberg DJ. Nd:YAG laser (1064 nm) irradiation for lower extremity telangiectases and small reticular veins: efficacy as measured by vessel color and size. Dermatol Surg. 2002;28(3):220–3.

    PubMed  Google Scholar 

  59. Sadick NS, Prieto VG, Shea CR, Nicholson J, McCaffrey T. Clinical and pathophysiologic correlates of 1064-nm Nd:Yag laser treatment of reticular veins and venulectasias. Arch Dermatol. 2001;137(5):613–7.

    CAS  PubMed  Google Scholar 

  60. Goldman MP, Eckhouse S. Photothermal sclerosis of leg veins. ESC Medical Systems, LTD Photoderm VL Cooperative Study Group. Dermatol Surg. 1996;22(4):323–30.

    Article  CAS  PubMed  Google Scholar 

  61. Disselhoff BC, der Kinderen DJ, Kelder JC, Moll FL. Randomized clinical trial comparing endovenous laser with cryostripping for great saphenous varicose veins. Br J Surg. 2008;95(10):1232–8.

    Article  CAS  PubMed  Google Scholar 

  62. Carradice D, Mekako AI, Mazari FA, Samuel N, Hatfield J, Chetter IC. Clinical and technical outcomes from a randomized clinical trial of endovenous laser ablation compared with conventional surgery for great saphenous varicose veins. Br J Surg. 2011;98(8):1117–23.

    Article  CAS  PubMed  Google Scholar 

  63. Balint R, Farics A, Parti K, Vizsy L, Batorfi J, Menyhei G, et al. Which endovenous ablation method does offer a better long-term technical success in the treatment of the incompetent great saphenous vein? Review. Vascular. 2016;24(6):649–57.

    Article  PubMed  Google Scholar 

  64. Boersma D, Kornmann VN, van Eekeren RR, Tromp E, Unlu C, Reijnen MM, et al. Treatment modalities for small saphenous vein insufficiency: systematic review and meta-analysis. J Endovasc Ther. 2016;23(1):199–211.

    Article  PubMed  Google Scholar 

  65. Nandhra S, El-sheikha J, Carradice D, Wallace T, Souroullas P, Samuel N, et al. A randomized clinical trial of endovenous laser ablation versus conventional surgery for small saphenous varicose veins. J Vasc Surg. 2015;61(3):741–6.

    Article  PubMed  Google Scholar 

  66. Samuel N, Carradice D, Wallace T, Mekako A, Hatfield J, Chetter I. Randomized clinical trial of endovenous laser ablation versus conventional surgery for small saphenous varicose veins. Ann Surg. 2013;257(3):419–26.

    Article  PubMed  Google Scholar 

  67. Weiss RA, Weiss MA, Eimpunth S, Wheeler S, Udompunturak S, Beasley KL. Comparative outcomes of different endovenous thermal ablation systems on great and small saphenous vein insufficiency: long-term results. Lasers Surg Med. 2015;47(2):156–60.

    Article  PubMed  Google Scholar 

  68. Goldman MP, Mauricio M, Rao J. Intravascular 1320-nm laser closure of the great saphenous vein: a 6- to 12-month follow-up study. Dermatol Surg. 2004;30(11):1380–5.

    PubMed  Google Scholar 

  69. Pannier F, Rabe E, Maurins U. First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology. 2009;24(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  70. Proebstle TM, Moehler T, Gul D, Herdemann S. Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser. Dermatol Surg. 2005;31(12):1678–83; discussion 83-4

    CAS  PubMed  Google Scholar 

  71. Vuylsteke M, De Bo TH, Dompe G, Di Crisci D, Abbad C, Mordon S. Endovenous laser treatment: is there a clinical difference between using a 1500 nm and a 980 nm diode laser? A multicenter randomised clinical trial. Int Angiol. 2011;30(4):327–34.

    CAS  PubMed  Google Scholar 

  72. Pannier F, Rabe E, Rits J, Kadiss A, Maurins U. Endovenous laser ablation of great saphenous veins using a 1470 nm diode laser and the radial fibre – follow-up after six months. Phlebology. 2011;26(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  73. Vuylsteke ME, Thomis S, Mahieu P, Mordon S, Fourneau I. Endovenous laser ablation of the great saphenous vein using a bare fibre versus a tulip fibre: a randomised clinical trial. Eur J Vasc Surg. 2012;44(6):587–92.

    Article  CAS  Google Scholar 

  74. Zuniga JM, Hingorani A, Ascher E, Shiferson A, Jung D, Jimenez R, et al. Short-term outcome analysis of radiofrequency ablation using ClosurePlus vs ClosureFast catheters in the treatment of incompetent great saphenous vein. J Vasc Surg. 2012;55(4):1048–51.

    Article  PubMed  Google Scholar 

  75. Jung IM, Min SI, Heo SC, Ahn YJ, Hwang KT, Chung JK. Combined endovenous laser treatment and ambulatory phlebectomy for the treatment of saphenous vein incompetence. Phlebology. 2008;23(4):172–7.

    Article  CAS  PubMed  Google Scholar 

  76. Kim HK, Kim HJ, Shim JH, Baek MJ, Sohn YS, Choi YH. Endovenous lasering versus ambulatory phlebectomy of varicose tributaries in conjunction with endovenous laser treatment of the great or small saphenous vein. Ann Vasc Surg. 2009;23(2):207–11.

    Article  PubMed  Google Scholar 

  77. Sadick NS, Wasser S. Combined endovascular laser plus ambulatory phlebectomy for the treatment of superficial venous incompetence: a 4-year perspective. J Cosmet Laser Ther. 2007;9(1):9–13.

    Article  PubMed  Google Scholar 

  78. de Roos KP, Nieman FH, Neumann HA. Ambulatory phlebectomy versus compression sclerotherapy: results of a randomized controlled trial. Dermatol Surg. 2003;29(3):221–6.

    PubMed  Google Scholar 

  79. Ramelet AA. Phlebectomy. Technique, indications and complications. Int Angiol. 2002;21(2 Suppl 1):46–51.

    PubMed  Google Scholar 

  80. Brethauer SA, Murray JD, Hatter DG, Reeves TR, Hemp JR, Bergan JJ. Treatment of varicose veins: proximal saphenofemoral ligation comparing adjunctive varicose phlebectomy with sclerotherapy at a military medical center. Vasc Surg. 2001;35(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  81. Garde C. Ambulatory phlebectomy. Dermatol Surg. 1995;21(7):628–30.

    Article  CAS  PubMed  Google Scholar 

  82. Shingler S, Robertson L, Boghossian S, Stewart M. Compression stockings for the initial treatment of varicose veins in patients without venous ulceration. Cochrane Database Syst Rev. 2013;12:CD008819.

    Google Scholar 

  83. Bakker NA, Schieven LW, Bruins RM, van den Berg M, Hissink RJ. Compression stockings after endovenous laser ablation of the great saphenous vein: a prospective randomized controlled trial. Eur J Vasc Endovasc Surg. 2013;46(5):588–92.

    Article  CAS  PubMed  Google Scholar 

  84. Ye K, Wang R, Qin J, Yang X, Yin M, Liu X, et al. Post-operative benefit of compression therapy after endovenous laser ablation for uncomplicated varicose veins: a randomised clinical trial. Eur J Vasc Endovasc Surg. 2016;52(6):847–53.

    Article  CAS  PubMed  Google Scholar 

  85. Kern P, Ramelet AA, Wutschert R, Hayoz D. Compression after sclerotherapy for telangiectasias and reticular leg veins: a randomized controlled study. J Vasc Surg. 2007;45(6):1212–6.

    Article  PubMed  Google Scholar 

  86. Nootheti PK, Cadag KM, Magpantay A, Goldman MP. Efficacy of graduated compression stockings for an additional 3 weeks after sclerotherapy treatment of reticular and telangiectatic leg veins. Dermatol Surg. 2009;35(1):53–7; discussion 7-8

    CAS  PubMed  Google Scholar 

  87. Weiss RA, Sadick NS, Goldman MP, Weiss MA. Post-sclerotherapy compression: controlled comparative study of duration of compression and its effects on clinical outcome. Dermatol Surg. 1999;25(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hamel-Desnos CM, Guias BJ, Desnos PR, Mesgard A. Foam sclerotherapy of the saphenous veins: randomised controlled trial with or without compression. Eur J Vasc Endovasc Surg. 2010;39(4):500–7.

    Article  CAS  PubMed  Google Scholar 

  89. Rabe E, Partsch H, Hafner J, Lattimer C, Mosti G, Neumann M, et al. Indications for medical compression stockings in venous and lymphatic disorders: an evidence-based consensus statement. Phlebology. 2018;33(3):163–84.

    Article  Google Scholar 

  90. Biemans AA, Kockaert M, Akkersdijk GP, van den Bos RR, de Maeseneer MG, Cuypers P, et al. Comparing endovenous laser ablation, foam sclerotherapy, and conventional surgery for great saphenous varicose veins. J Vasc Surg. 2013;58(3):727–34.e1.

    Article  PubMed  Google Scholar 

  91. Rasmussen LH, Lawaetz M, Bjoern L, Vennits B, Blemings A, Eklof B. Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Br J Surg. 2011;98(8):1079–87.

    Article  CAS  PubMed  Google Scholar 

  92. Venermo M, Saarinen J, Eskelinen E, Vahaaho S, Saarinen E, Railo M, et al. Randomized clinical trial comparing surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy for the treatment of great saphenous varicose veins. Br J Surg. 2016;103(11):1438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van der Velden SK, Biemans AA, De Maeseneer MG, Kockaert MA, Cuypers PW, Hollestein LM, et al. Five-year results of a randomized clinical trial of conventional surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy in patients with great saphenous varicose veins. Br J Surg. 2015;102(10):1184–94.

    Article  PubMed  Google Scholar 

  94. Brittenden J, Cotton SC, Elders A, Ramsay CR, Norrie J, Burr J, et al. A randomized trial comparing treatments for varicose veins. N Engl J Med. 2014;371(13):1218–27.

    Article  CAS  PubMed  Google Scholar 

  95. Paravastu SC, Horne M, Dodd PD. Endovenous ablation therapy (laser or radiofrequency) or foam sclerotherapy versus conventional surgical repair for short saphenous varicose veins. Cochrane Database Syst Rev. 2016;11:Cd010878.

    PubMed  Google Scholar 

  96. Fodor L, Ramon Y, Fodor A, Carmi N, Peled IJ, Ullmann Y. A side-by-side prospective study of intense pulsed light and Nd:YAG laser treatment for vascular lesions. Ann Plast Surg. 2006;56(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  97. Parlar B, Blazek C, Cazzaniga S, Naldi L, Kloetgen HW, Borradori L, et al. Treatment of lower extremity telangiectasias in women by foam sclerotherapy vs. Nd:YAG laser: a prospective, comparative, randomized, open-label trial. J Eur Acad Dermatol Venereol. 2015;29(3):549–54.

    Article  CAS  PubMed  Google Scholar 

  98. Coles CM, Werner RS, Zelickson BD. Comparative pilot study evaluating the treatment of leg veins with a long pulse ND:YAG laser and sclerotherapy. Lasers Surg Med. 2002;30(2):154–9.

    Article  PubMed  Google Scholar 

  99. Levy JL, Elbahr C, Jouve E, Mordon S. Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med. 2004;34(3):273–6.

    Article  PubMed  Google Scholar 

  100. Lupton JR, Alster TS, Romero P. Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases. Dermatol Surg. 2002;28(8):694–7.

    PubMed  Google Scholar 

  101. Munia MA, Wolosker N, Munia CG, Chao WS, Puech-Leao P. Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: a prospective study. Dermatol Surg. 2012;38(4):635–9.

    Article  CAS  PubMed  Google Scholar 

  102. Somjen GM, Ziegenbein R, Johnston AH, Royle JP. Anatomical examination of leg telangiectases with duplex scanning. J Dermatol Surg Oncol. 1993;19(10):940–5.

    Article  CAS  PubMed  Google Scholar 

  103. Baldt MM, Bohler K, Zontsich T, Bankier AA, Breitenseher M, Schneider B, et al. Preoperative imaging of lower extremity varicose veins: color coded duplex sonography or venography. J Ultrasound Med. 1996;15(2):143–54.

    Article  CAS  PubMed  Google Scholar 

  104. Blomgren L, Johansson G, Bergqvist D. Randomized clinical trial of routine preoperative duplex imaging before varicose vein surgery. Br J Surg. 2005;92(6):688–94.

    Article  CAS  PubMed  Google Scholar 

  105. Meyer T, Cavallaro A, Lang W. Duplex ultrasonography in the diagnosis of incompetent Cockett veins. Eur J Ultrasound. 2000;11(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  106. Labropoulos N, Tiongson J, Pryor L, Tassiopoulos AK, Kang SS, Ashraf Mansour M, et al. Definition of venous reflux in lower-extremity veins. J Vasc Surg. 2003;38(4):793–8.

    Article  PubMed  Google Scholar 

  107. Kim J, Richards S, Kent PJ. Clinical examination of varicose veins – a validation study. Ann R Coll Surg Engl. 2000;82(3):171–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Singh S, Lees TA, Donlon M, Harris N, Beard JD. Improving the preoperative assessment of varicose veins. Br J Surg. 1997;84(6):801–2.

    CAS  PubMed  Google Scholar 

  109. Gibson K, Ferris B. Cyanoacrylate closure of incompetent great, small and accessory saphenous veins without the use of post-procedure compression: initial outcomes of a post-market evaluation of the VenaSeal system (the WAVES Study). Vascular. 2017;25(2):149–56.

    Article  PubMed  Google Scholar 

  110. Morrison N, Gibson K, McEnroe S, Goldman M, King T, Weiss R, et al. Randomized trial comparing cyanoacrylate embolization and radiofrequency ablation for incompetent great saphenous veins (VeClose). J Vasc Surg. 2015;61(4):985–94.

    Article  PubMed  Google Scholar 

  111. Morrison N, Gibson K, Vasquez M, Weiss R, Cher D, Madsen M, et al. VeClose trial 12-month outcomes of cyanoacrylate closure versus radiofrequency ablation for incompetent great saphenous veins. J Vasc Surg Venous Lymphat Disord. 2017;5(3):321–30.

    Article  PubMed  Google Scholar 

  112. Koramaz I, El Kilic H, Gokalp F, Bitargil M, Bektas N, Engin E, et al. Ablation of the great saphenous vein with nontumescent n-butyl cyanoacrylate versus endovenous laser therapy. J Vasc Surg Venous Lymphat Disord. 2017;5(2):210–5.

    Article  PubMed  Google Scholar 

  113. Kim PS, Bishawi M, Draughn D, Boter M, Gould C, Koziarski J, et al. Mechanochemical ablation for symptomatic great saphenous vein reflux: a two-year follow-up. Phlebology. 2017;32(1):43–8.

    Article  PubMed  Google Scholar 

  114. Bishawi M, Bernstein R, Boter M, Draughn D, Gould CF, Hamilton C, et al. Mechanochemical ablation in patients with chronic venous disease: a prospective multicenter report. Phlebology. 2014;29(6):397–400.

    Article  CAS  PubMed  Google Scholar 

  115. Tang TY, Kam JW, Gaunt ME. ClariVein(R) – early results from a large single-centre series of mechanochemical endovenous ablation for varicose veins. Phlebology. 2017;32(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  116. Davis LT, Duffy DM. Determination of incidence and risk factors for postsclerotherapy telangiectatic matting of the lower extremity: a retrospective analysis. J Dermatol Surg Oncol. 1990;16(4):327–30.

    Article  CAS  PubMed  Google Scholar 

  117. Weiss RA, Weiss MA. Incidence of side effects in the treatment of telangiectasias by compression sclerotherapy: hypertonic saline vs. polidocanol. J Dermatol Surg Oncol. 1990;16(9):800–4.

    Article  CAS  PubMed  Google Scholar 

  118. Goldman MP, Sadick NS, Weiss RA. Cutaneous necrosis, telangiectatic matting, and hyperpigmentation following sclerotherapy. Etiology, Prevention, and treatment. Dermatol Surg. 1995;21(1):19–29; quiz 31–2

    Article  CAS  PubMed  Google Scholar 

  119. Sadick NS. Sclerotherapy of varicose and telangiectatic leg veins. Minimal sclerosant concentration of hypertonic saline and its relationship to vessel diameter. J Dermatol Surg Oncol. 1991;17(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  120. Leach BC, Goldman MP. Comparative trial between sodium tetradecyl sulfate and glycerin in the treatment of telangiectatic leg veins. Dermatol Surg. 2003;29(6):612–4; discussion 5

    PubMed  Google Scholar 

  121. Goldman MP, Kaplan RP, Duffy DM. Postsclerotherapy hyperpigmentation: a histologic evaluation. J Dermatol Surg Oncol. 1987;13(5):547–50.

    Article  CAS  PubMed  Google Scholar 

  122. Georgiev M. Postsclerotherapy hyperpigmentations. Chromated glycerin as a screen for patients at risk (a retrospective study). J Dermatol Surg Oncol. 1993;19(7):649–52.

    Article  CAS  PubMed  Google Scholar 

  123. Yiannakopoulou E. Safety concerns for sclerotherapy of telangiectases, reticular and varicose veins. Pharmacology. 2016;98(1–2):62–9.

    Article  CAS  PubMed  Google Scholar 

  124. Biegeleisen K, Neilsen RD, O’Shaughnessy A. Inadvertent intra-arterial injection complicating ordinary and ultrasound-guided sclerotherapy. J Dermatol Surg Oncol. 1993;19(10):953–8.

    Article  CAS  PubMed  Google Scholar 

  125. Fegan WG, Pegum JM. Accidental intra-arterial injection during sclerotherapy of varicose veins. Br J Surg. 1974;61(2):124–6.

    Article  CAS  PubMed  Google Scholar 

  126. Goldstein M. Complications of sclerotherapy. Phlebologie. 1979;32(2):221–8.

    CAS  PubMed  Google Scholar 

  127. Grommes J, Franzen EL, Binnebosel M, Toonder IM, Wittens C, Jacobs M, et al. Inadvertent arterial injection using catheter-assisted sclerotherapy resulting in amputation. Dermatol Surg. 2011;37(4):536–8.

    Article  CAS  PubMed  Google Scholar 

  128. Magee RH. A complication of sclerotherapy. Med J Aust. 1999;171(3):166.

    Article  CAS  PubMed  Google Scholar 

  129. Melliere D, Almou M, Lellouche D, Becquemin JP, Hoehne M. Arterial complications following surgery or sclerotherapy of varices. J Mal Vasc. 1986;11(1):19–22.

    CAS  PubMed  Google Scholar 

  130. Nitecki SS, Bass A. Inadvertent arterial injury secondary to treatment of venous insufficiency. Vascular. 2007;15(1):49–52.

    Article  PubMed  Google Scholar 

  131. Oesch A, Stirnemann P, Mahler F. Acute ischemic syndrome of the foot following sclerotherapy of varicose veins. Schweiz Med Wochenschr. 1984;114(34):1155–8.

    CAS  PubMed  Google Scholar 

  132. Saliou C, Duteille F, Soyer J, Sraieb T, Turc I, Laurian C. IATROGENIC intra-arterial injection during sclerotherapy of the external saphenous vein. J Chir. 1997;134(2):65–8.

    CAS  Google Scholar 

  133. Zipper SG. Peroneal nerve damage after varicose vein sclerotherapy with ethoxysclerol. Single case description with malpractice relevant questions. Versicherungsmedizin. 2000;52(4):185–7.

    CAS  PubMed  Google Scholar 

  134. Jia X, Mowatt G, Burr JM, Cassar K, Cook J, Fraser C. Systematic review of foam sclerotherapy for varicose veins. Br J Surg. 2007;94(8):925–36.

    Article  CAS  PubMed  Google Scholar 

  135. Bush RG, Derrick M, Manjoney D. Major neurological events following foam sclerotherapy. Phlebology. 2008;23(4):189–92.

    Article  CAS  PubMed  Google Scholar 

  136. Forlee MV, Grouden M, Moore DJ, Shanik G. Stroke after varicose vein foam injection sclerotherapy. J Vasc Surg. 2006;43(1):162–4.

    Article  PubMed  Google Scholar 

  137. Nelson JS, Milner TE, Anvari B, Tanenbaum BS, Kimel S, Svaasand LO, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch Dermatol. 1995;131(6):695–700.

    Article  CAS  PubMed  Google Scholar 

  138. Tong AK, Tan OT, Boll J, Parrish JA, Murphy GF. Ultrastructure: effects of melanin pigment on target specificity using a pulsed dye laser (577 nm). J Invest Dermatol. 1987;88(6):747–52.

    Article  CAS  PubMed  Google Scholar 

  139. Nesbitt C, Eifell RK, Coyne P, Badri H, Bhattacharya V, Stansby G. Endovenous ablation (radiofrequency and laser) and foam sclerotherapy versus conventional surgery for great saphenous vein varices. Cochrane Database Syst Rev. 2011;10:Cd005624.

    Google Scholar 

  140. Darwood RJ, Theivacumar N, Dellagrammaticas D, Mavor AI, Gough MJ. Randomized clinical trial comparing endovenous laser ablation with surgery for the treatment of primary great saphenous varicose veins. Br J Surg. 2008;95(3):294–301.

    Article  CAS  PubMed  Google Scholar 

  141. Rasmussen LH, Bjoern L, Lawaetz M, Blemings A, Lawaetz B, Eklof B. Randomized trial comparing endovenous laser ablation of the great saphenous vein with high ligation and stripping in patients with varicose veins: short-term results. J Vasc Surg. 2007;46(2):308–15.

    Article  PubMed  Google Scholar 

  142. Rautio T, Ohinmaa A, Perala J, Ohtonen P, Heikkinen T, Wiik H, et al. Endovenous obliteration versus conventional stripping operation in the treatment of primary varicose veins: a randomized controlled trial with comparison of the costs. J Vasc Surg. 2002;35(5):958–65.

    Article  PubMed  Google Scholar 

  143. Subramonia S, Lees T. Randomized clinical trial of radiofrequency ablation or conventional high ligation and stripping for great saphenous varicose veins. Br J Surg. 2010;97(3):328–36.

    Article  CAS  PubMed  Google Scholar 

  144. Doganci S, Yildirim V, Demirkilic U. Does puncture site affect the rate of nerve injuries following endovenous laser ablation of the small saphenous veins? Eur J Vasc Endovasc Surg. 2011;41(3):400–5.

    Article  CAS  PubMed  Google Scholar 

  145. Carradice D, Samuel N, Wallace T, Mazari FA, Hatfield J, Chetter I. Comparing the treatment response of great saphenous and small saphenous vein incompetence following surgery and endovenous laser ablation: a retrospective cohort study. Phlebology. 2012;27(3):128–34.

    Article  CAS  PubMed  Google Scholar 

  146. Siribumrungwong B, Noorit P, Wilasrusmee C, Attia J, Thakkinstian A. A systematic review and meta-analysis of randomised controlled trials comparing endovenous ablation and surgical intervention in patients with varicose vein. Eur J Vasc Endovasc Surg. 2012;44(2):214–23.

    Article  CAS  PubMed  Google Scholar 

  147. de Medeiros CA, Luccas GC. Comparison of endovenous treatment with an 810 nm laser versus conventional stripping of the great saphenous vein in patients with primary varicose veins. Dermatol Surg. 2005;31(12):1685–94; discussion 94

    PubMed  Google Scholar 

  148. Brar R, Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Surgical management of varicose veins: meta-analysis. Vascular. 2010;18(4):205–20.

    Article  PubMed  Google Scholar 

  149. Knipp BS, Blackburn SA, Bloom JR, Fellows E, Laforge W, Pfeifer JR, et al. Endovenous laser ablation: venous outcomes and thrombotic complications are independent of the presence of deep venous insufficiency. J Vasc Surg. 2008;48(6):1538–45.

    Article  PubMed  Google Scholar 

  150. Mozes G, Kalra M, Carmo M, Swenson L, Gloviczki P. Extension of saphenous thrombus into the femoral vein: a potential complication of new endovenous ablation techniques. J Vasc Surg. 2005;41(1):130–5.

    Article  PubMed  Google Scholar 

  151. Puggioni A, Kalra M, Carmo M, Mozes G, Gloviczki P. Endovenous laser therapy and radiofrequency ablation of the great saphenous vein: analysis of early efficacy and complications. J Vasc Surg. 2005;42(3):488–93.

    Article  PubMed  Google Scholar 

  152. Ramelet AA. Complications of ambulatory phlebectomy. Dermatol Surg. 1997;23(10):947–54.

    Article  CAS  PubMed  Google Scholar 

  153. Scavee V, Lesceu O, Theys S, Jamart J, Louagie Y, Schoevaerdts JC. Hook phlebectomy versus transilluminated powered phlebectomy for varicose vein surgery: early results. Eur J Vasc Endovasc Surg. 2003;25(5):473–5.

    Article  CAS  PubMed  Google Scholar 

  154. Spreafico G, Piccioli A, Bernardi E, Giraldi E, Pavei P, Borgoni R, et al. Six-year follow-up of endovenous laser ablation for great saphenous vein incompetence. J Vasc Surg Venous Lymphat Disord. 2013;1(1):20–5.

    Article  PubMed  Google Scholar 

  155. Chapman-Smith P, Browne A. Prospective five-year study of ultrasound-guided foam sclerotherapy in the treatment of great saphenous vein reflux. Phlebology. 2009;24(4):183–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Hahn Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, S.H., Schilling, L.M., Weiss, M.A., Weiss, R.A. (2019). Leg Veins. In: Alam, M. (eds) Evidence-Based Procedural Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-02023-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02023-1_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02022-4

  • Online ISBN: 978-3-030-02023-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics