Skip to main content

Port-Wine Birthmark and Hemangioma

  • Chapter
  • First Online:
Book cover Evidence-Based Procedural Dermatology

Abstract

Port-wine birthmarks (PWB) and infantile hemangiomas (IH) typically present, respectively, at birth to within weeks of birth and represent two of the most common types of vascular anomalies in children. Without treatment, port-wine birthmarks follow an expected evolution of hypertrophic change and bleb development (usually around the third decade of life) with associated physical and psychosocial comorbidities. Conversely, infantile hemangiomas typically follow a process of predictable involution that begins at approximately 1 year of life; despite the overall positive clinical outcome of most infantile hemangiomas, permanent sequelae such as telangiectasia, atrophic wrinkling, and redundant skin with fibro-fatty residua may be observed in up to 50% of patients after “spontaneous resolution,” a consideration that should be included in long-term prognosis and patient expectation discussions. Myriad medical and procedural treatment options exist for both PWB and IH and their associated complications, and patients may seek intervention at any age (i.e., infant to adult). It is therefore incumbent on all dermatologists and plastic surgeons to keep abreast of evolving treatment technologies and therapeutic approaches in order to deliver optimal clinical outcomes. This chapter reviews the published evidence regarding clinical evaluation and efficacy of available procedural interventions for PWB and IH and offers a practical approach based on that data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wassef M, Blei F, Adams D, et al. Vascular anomalies classification: recommendations from the international society for the study of vascular anomalies. Pediatrics. 2015;136(1):e203–14.

    PubMed  Google Scholar 

  2. Waelchli R, Aylett S, Robinson K, Chong W, Martinez A, Kinsler V. New vascular classification of port-wine stains: improving prediction of Sturge–Weber risk. Br J Dermatol. 2014;171(4):861–7. https://doi.org/10.1111/bjd.13203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shirley MD, Tang H, Gallione CJ, et al. Sturge-Weber syndrome and port wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dutkiewicz AS, Ezzedine K, Mazereeuw-Hautier J, et al. A prospective study of risk for Sturge-Weber syndrome in children with upper facial port-wine stain. J Am Acad Dermatol. 2015;72(3):473–80.

    PubMed  Google Scholar 

  5. Van Drooge AM, Beek JF, van der Veen JP, et al. Hypertrophy in port-wine stains: prevalence and patient characteristics in a large patient cohort. J Am Acad Dermatol. 2012;67(2):1214–9.

    PubMed  Google Scholar 

  6. Lee JW, Chung HY, Cerrati EW, TM O, Waner M. The natural history of soft tissue hypertrophy, bony hypertrophy, and nodule formation in patients with untreated head and neck capillary malformations. Dermatol Surg. 2015;41(11):1241–5.

    CAS  PubMed  Google Scholar 

  7. Passeron T, Salhi A, Mazer JM, et al. Prognosis and response to laser treatment of early-onset hypertrophic post-wine stains (PWS). J Am Acad Dermatol. 2016;75(1):64–8.

    PubMed  Google Scholar 

  8. Minkis K, Geronemus RG, Hale EK. Port wine stain progression: a potential consequence of delayed and inadequate treatment? Lasers Surg Med. 2009;41(6):423–6. https://doi.org/10.1002/lsm.20788.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kilcline C, Frieden IJ. Infantile hemangiomas: how common are they? A systematic review of the medical literature. Pediatr Dermatol. 2008;25(2):168–73.

    PubMed  Google Scholar 

  10. Kanada KN, Merin MR, Munden A, Friedlander SF. A prospective study of cutaneous findings in newborns in the United States: correlation with race, ethnicity, and gestational status using updated classification and nomenclature. J Pediatr. 2012;161(2):240–5.

    PubMed  Google Scholar 

  11. Goelz R, Poets CF. Incidence and treatment of infantile haemangioma in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2015;100(1):F85–91.

    PubMed  Google Scholar 

  12. Chiller KG, Passaro D, Frieden IJ. Hemangiomas of infancy clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex. Arch Dermatol. 2002;138(12):1567–76.

    PubMed  Google Scholar 

  13. Frieden IJ, Reese V, Cohen D. PHACE syndrome: the association of posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities. Arch Dermatol. 1996;132(3):307–11.

    CAS  PubMed  Google Scholar 

  14. Metry D, Heyer G, Hess C, et al. PHACE syndrome research conference. Consensus statement on diagnostic criteria for PHACE syndrome. Pediatrics. 2009;124(5):1447–56.

    PubMed  Google Scholar 

  15. Iacobas I, Burrows PE, Frieden IJ, et al. LUMBAR: association between cutaneous infantile hemangiomas of the lower body and regional congenital anomalies. J Pediatr. 2010;157(5):795–801, e791.

    PubMed  Google Scholar 

  16. Orlow SJ, Isakoff MS, Blei F. Increased risk of symptomatic hemangiomas of the airway in association with cutaneous hemangiomas in a “beard” distribution. J Pediatr. 1997;131(4):643–6.

    CAS  PubMed  Google Scholar 

  17. Garzon MC. Infantile hemangiomas. In: Bolognia JL, Jorizzo JL, Rapini RP, editors. Dermatology. London: Mosby; 2003. p. 1599–614.

    Google Scholar 

  18. Tollefson MM, Frieden IJ. Early growth of infantile hemangiomas: what parents’ photographs tell us. Pediatrics. 2012;130(2):e314–20.

    PubMed  Google Scholar 

  19. Drolet BA, Frommelt PC, Chamlin SL, et al. Initiation and use of propranolol for infantile hemangioma: report of a consensus conference. Pediatrics. 2013;131(1):128–40.

    PubMed  PubMed Central  Google Scholar 

  20. Zheng JW, Zhang L, Zhou Q, et al. A practical guide to treatment of infantile hemangiomas of the head and neck. Int J Clin Exp Med. 2013;6(10):851–60.

    PubMed  PubMed Central  Google Scholar 

  21. Nguyen TA, Krakowski AC, Naheedy JH, Kruk PG, Friedlander SF. Imaging pediatric vascular lesions. J Clin Aesthetic Dermatol. 2015;8(12):27–41.

    Google Scholar 

  22. Gressens P, Hüppi PS. Are prenatal ultrasounds safe for the developing brain? Pediatr Res. 2007;61:265–6.

    PubMed  Google Scholar 

  23. Greenspan A, McGahan JP, Vogelsang P, Szabo RM. Imaging strategies in the evaluation of soft-tissue hemangiomas of the extremities: correlation of the findings of plain radiography. Angiography, CT, MRI, and ultrasonography in 12 histologically proven cases. Skelet Radiol. 1992;21:11–8.

    CAS  Google Scholar 

  24. Kanal E, Borgstede JP, Barkovich AJ, et al. American College of Radiology white paper on MR safety. AJR Am J Roentgenol. 2002;178:1335–47.

    PubMed  Google Scholar 

  25. Kanal E, Borgstede JP, Barkovich AJ, et al. American College of Radiology white paper on MR safety: 2004 update and revisions. AJR Am J Roentgenol. 2004;182:1111–4.

    PubMed  Google Scholar 

  26. Khaier A, Nischal KK, Espinosa M, Manoj B. Periocular port wine stain: the great Ormond street hospital experience. Ophthalmology. 2011;118(11):2274–8, e2271.

    PubMed  Google Scholar 

  27. Tallman B, Tan OI, Morelli JG, et al. Location of port-wine stains and the likelihood of ophthalmic and/or central nervous system complications. Pediatrics. 1991;87(3):323–7.

    CAS  PubMed  Google Scholar 

  28. Izikson L, Nelson JS, Anderson RR. Treatment of hypertrophic and resistant port wine stains with a 755 nm laser: a case series of 20 patients. Lasers Surg Med. 2009;41(6):427–32.

    PubMed  PubMed Central  Google Scholar 

  29. Lister T, Wright P, Chappell P. Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review. Lasers Med Sci. 2010;25(3):449–57.

    PubMed  Google Scholar 

  30. Jung B, Choi B, Durkin AJ, Kelly KM, Nelson JS. Characterization of port wine stain skin erythema and melanin content using cross-polarized diffuse reflectance imaging. Lasers Surg Med. 2004;34(2):174–81.

    PubMed  Google Scholar 

  31. Kim CS, Kim MK, Jung B, Choi B, Verkruysse W, Jeong MY, Nelson JS. Determination of an optimized conversion matrix for device independent skin color image analysis. Lasers Surg Med. 2005;37(2):138–43.

    PubMed  Google Scholar 

  32. Sharif SA, Taydas E, Mazhar A, et al. Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: a review. Br J Dermatol. 2012;167(6):1215–23. https://doi.org/10.1111/j.1365-2133.2012.11139.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    CAS  PubMed  Google Scholar 

  34. Smit JM, Bauland CG, Wijnberg DS, Spauwen PH. Pulsed dye laser treatment, a review of indications and outcome based on published trials. Br J Plast Surg. 2005;58(7):981–7.

    CAS  PubMed  Google Scholar 

  35. Faurschou A, Olesen AB, Leonardi-Bee J, Haedersdal M. Lasers or light sources for treating port-wine stains. Cochrane Database Syst Rev. 2011;(11):CD007152.

    Google Scholar 

  36. Yung A, Sheehan-Dare R. A comparative study of a 595-nm with a 585-nm pulsed dye laser in refractory port wine stains. Br J Dermatol. 2005;153(3):601–6.

    CAS  PubMed  Google Scholar 

  37. Greve B, Raulin C. Prospective study of port wine stain treatment with dye laser, comparison of two wavelengths (585 nm vs 595 nm) and two pulsed durations (0.5 milliseconds vs 20 milliseconds). Laser Surg Med. 2004;34(2):168–73.

    Google Scholar 

  38. Sakamoto FJ, Avram MM, Anderson RR. Lasers and other energy technologies—principles & skin interactions. In: Bolognia JL, Jorizzo JL, Schaffer JV, editors. Dermatology. 3rd ed. Philadelphia: Elsevier; 2012. p. 2255.

    Google Scholar 

  39. Yu W, Ying H, Chen Y, et al. In vivo investigation of the safety and efficacy of pulsed dye laser with two spot sizes in port-wine stain treatment: a prospective side-by-side comparison. Photomed Laser Surf. 2017;35(9):465–71.

    Google Scholar 

  40. Wanner M, Sakamoto FJ, Avram MM, et al. Immediate skin responses to laser and light treatments: therapeutic endpoints: how to obtain efficacy. J Am Acad Dermatol. 2016 May;74(5):821–33.

    PubMed  Google Scholar 

  41. Brauer JA, Farhadian JA, Bernstein LJ, Bae YS, Geronemus RG. Pulsed dye laser at subpurpuric settings for the treatment of pulsed dye laserinduced ecchymoses in patients with port-wine stains. Dermatol Surg. 2018;44(2):220–6.

    CAS  PubMed  Google Scholar 

  42. Chapas AM, Eickhorst K, Geronemus RG. Efficacy of early treatment of facial port wine stains in newborns: a review of 49 cases. Lasers Surg Med. 2007;39(7):563–8.

    PubMed  Google Scholar 

  43. Chapas AM, Geronemus RG. Physiologic changes in vascular birthmarks during early infancy: mechanisms and clinical implications. J Am Acad Dermatol. 2009;61(6):1081–2.

    PubMed  Google Scholar 

  44. Reyes BA, Geronemus R. Treatment of port-wine stains during childhood with the flash lamp pumped pulsed dye laser. J Am Acad Dermatol. 1990;23:1142–8.

    CAS  PubMed  Google Scholar 

  45. Fitzpatrick RE, Lowe NJ, Goldman NP, Borden H, Behr KL, Ruiz-Esparza J. Flashlamp-pumped pulsed dye laser treatment of port-wine stains. J Dermatol Surg Oncol. 1994;20:743–8.

    CAS  PubMed  Google Scholar 

  46. Cordoro KM, Speetzen LS, Koerper MA, IJ F. Physiologic changes in vascular birthmarks during early infancy: mechanisms and clinical implications. J Am Acad Dermatol. 2009;60:669–75.

    PubMed  Google Scholar 

  47. Renfro L, Geronemus RG. Anatomical differences of port-wine stains in response to treatment with the pulsed dye laser. Arch Dermatol. 1993;129(2):182–8.

    CAS  PubMed  Google Scholar 

  48. Yu W, Ma G, Qiu Y, et al. Why do port-wine stains (PWS) on the lateral face respond better to pulsed dye laser (PDL) than those located on the central face? J Am Acad Dermatol. 2016;74(3):527–35.

    PubMed  Google Scholar 

  49. Chen JK, Ghasri P, Aguilar G, et al. An overview of clinical and experimental treatment modalities for port wine stains. J Am Acad Dermatol. 2012;67(2):289–304.

    PubMed  PubMed Central  Google Scholar 

  50. Mork NJ, Austad J, Helsing P. Do port wine stains recur after successful treatment with pulsed dye laser? J Eur Acad Dermatol Venereol. 1998;11:S142–3.

    Google Scholar 

  51. Michel S, Landthaler M, Hohenleutner U. Recurrence of port-wine stains after treatment with the flash lamp pumped pulsed dye laser. Br J Dermatol. 2000;143:1230–4.

    CAS  PubMed  Google Scholar 

  52. Orten SS, Waner M, Flock S. Port wine stains: an assessment of 5 years of treatment. Arch Otolaryngol Head Neck Surg. 1996;122:1174–9.

    CAS  PubMed  Google Scholar 

  53. Yang MU, Yaroslavsky AN, Farinelli WA, et al. Long-pulsed neodymium;yttrium-aluminum-garnet laser treatment for port-wine stains. J Am Acad Dermatol. 2005;52(3 Pt1):480–90.

    PubMed  Google Scholar 

  54. Izikson L, Nelson JS, Anderson RR. Treatment of hypertrophic and resistant port wine stains with a 755 nm laser: a case series of 20 patients. Lasers Surg Med. 2009;41(6):427–32.

    PubMed  PubMed Central  Google Scholar 

  55. Reddy KK, Brauer JA, Idriss MH, et al. Treatment of port-wine stains with a short pulse width 532-nm Nd:YAG laser. J Drugs Dermatol. 2013 Jan;12(1):66–71.

    CAS  PubMed  Google Scholar 

  56. McGill DJ, MacLaren W, Mackay IR. A direct comparison of pulsed dye, alexandrite, KTP and Nd:YAG lasers and IPL in patients with previously treated capillary malformations. Lasers Surg Med. 2008;40(6):390–8.

    PubMed  Google Scholar 

  57. Li L, Kono T, Groff WF, et al. Comparison study of a long-pulse pulsed dye laser and a long-pulse pulsed alexndrite laser in the treatment of port wine stains. J Cosmet Laser Ther. 2008;10(1):12–5.

    PubMed  Google Scholar 

  58. Tierney EP, Hanke CW. Alexandrite laser for the treatment of port wine stains refractory to pulsed dye laser. Dermatol Surg. 2011;37(9):1268–78.

    CAS  PubMed  Google Scholar 

  59. Grillo E, Gonzalez-Munoz P, Boixeda P, et al. Alexandrite laser for the treatment of resistant and hypertrophic port wine stains: a clinical, histological and histochemical study. Actas Dermosifiliogr. 2016;107(7):591–6.

    CAS  PubMed  Google Scholar 

  60. Carlsen BC, Wenande E, Erlendsson AM, Faurschou A, Dierickx C, Haedersdal M. A randomized side-by-side study comparing alexandrite laser at different pulse durations for port wine stains. Lasers Surg Med. 2017;49(1):97–103.

    PubMed  Google Scholar 

  61. Li D, Chen B, Wu W, Ying Z. Experimental investigation on the vascular thermal response to near-infrared laser pulses. Lasers Med Sci. 2017;32(9):2023–38. Epub ahead of print.

    PubMed  Google Scholar 

  62. Van Drooge AM, Bosveld B, van der Veen JP, et al. Long-pulsed 1064 nm Nd:YAG laser improves hypertrophic port-wine stains. J Eur Acad Dermatol Venereol. 2013;27(11):1381–6.

    PubMed  Google Scholar 

  63. Kono T, Frederick Groff W, Chan HH, et al. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for hypertrophic port-wine stains on the lips. J Cosmet Laser Ther. 2009;11(1):11–3.

    PubMed  Google Scholar 

  64. Chang HS, Kim YG, Lee JH. Treatment using a long pulsed nd:yag laser with a pulsed dye laser for four cases of blebbed pot wine stains. Ann Dermatol. 2011;23(Suppl 1):S75–8.

    PubMed  PubMed Central  Google Scholar 

  65. Alster TS, Tanzi EL. Combined 595-nm and 1064-nm laser irradiation of recalcitrant and hypertrophic port-wine stains in children and adults. Dermatol Surg. 2009;35(6):914–8.

    CAS  PubMed  Google Scholar 

  66. Wang T, Chen D, Yang J, Ma G, Yu W, Lin X. Safety and efficacy of dual wavelength laser (1064 nm + 595 nm) for treatment of non-treated portwine stains. J Eur Acad Dermatol Venereol. 2018;32(2):260–4. Epub ahead of print.

    CAS  PubMed  Google Scholar 

  67. Borges da Costa J, Boxixeda P, Moreno C, Santiago J. Treatment of resistant port-wine stains with a pulsed dual wavelength 595 and 1064 nm laser: a histochemical evaluation of the vessel wall destruction and selectivity. Photomed Laser Surg. 2009;27(4):599–605.

    PubMed  Google Scholar 

  68. Al-Dhalimi MA, Al-Janabi MH. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1064 nm in treatment of facial port-wine stain. Lasers Surg Med. 2016;48(9):852–8.

    PubMed  Google Scholar 

  69. Kwiek B, Rozalski M, Kowalewski C, Ambroziak M. Retrospective single center study of the efficacy of large spot 532 nm laser for the treatment of facial capillary malformations in 44 patients with the use of three-dimensional image analysis. Lasers Surg Med. 2017;49(8):743–9.

    PubMed  Google Scholar 

  70. Al-Janabi MH, Ismaeel Ali NT, Mohamed Al-Sabti KD, et al. A new imaging technique for assessment of the effectiveness of long pulse Nd:YAG 532 nm laser in treatment of facial port wine stain. J Cosmet Laser Ther. 2017;28:1–4. Epub ahead of print.

    Google Scholar 

  71. Latkowski IT, Wysocki MS, Siewiera IP. Own clinical experience in treatment of port-wine stain with KTP 532 nm laser. Wiad Lek. 2005;58(7–8):391–6. Article in Polish.

    PubMed  Google Scholar 

  72. Pence B, Aybey B, Ergenekon G. Outcomes of 532 nm frequency-doubled Nd:YAG laser use in the treatment of port-wine stains. Dermatol Surg. 2005;31(5):509–17.

    PubMed  Google Scholar 

  73. Ho WS, Chan HH, Ying SY, Chan PC. Laser treatment of congenital facial port-wine stains: long-term efficacy and complication in Chinese patients. Lasers Surg Med. 2002;30(1):44–7.

    PubMed  Google Scholar 

  74. Shi W, Wang J, Lin Y, et al. Treatment of port wine stains with pulsed dye laser: a retrospective study of 848 cases in Shandong Province, People’s Republic of China. Drug Des Devel Ther. 2014;8:2531–8.

    PubMed  PubMed Central  Google Scholar 

  75. Liu H, Dang Y, Chai X, Wang Z, Ma L, Ren Q. Treatment of port-wine stains with the 595-nm pulsed dye laser: a pilot study in Chinese patients. Clin Exp Dermatol. 2007;32(6):646–9.

    CAS  PubMed  Google Scholar 

  76. Sharma VK, Khandpur S. Efficacy of pulsed dye laser in facial port-wine stains in Indian patients. Dermatol Surg. 2007;33(5):560–6.

    CAS  PubMed  Google Scholar 

  77. Khandpur S, Sharma VK. Assessment of efficacy of the 595-nm pulsed dye laser in the treatment of facial port-wine stains in Indian patients. Dermatol Surg. 2016;42(6):717–26.

    CAS  PubMed  Google Scholar 

  78. Thajudheen CP, Jyothy K, Priyadarshini A. Treatment of port-wine stains with flash lamp pumped pulsed dye laser on Indian skin: a six year study. J Cutan Aesthet Surg. 2014;7(1):32–6.

    PubMed  PubMed Central  Google Scholar 

  79. Bae YS, Ng E, Geronemus RG. Successful treatment of two pediatric port wine stains in darker skin types using 595 nm laser. Laser Surg Med. 2016;48(4):339–42.

    Google Scholar 

  80. Woo SH, Ahn HH, Kim SN, Kye YC. Treatment of vascular skin lesions with the variable-pulsed 595 nm pulsed dye laser. Dermatol Surg. 2006;32(1):41–8.

    CAS  PubMed  Google Scholar 

  81. Moy WJ, Ma G, Kelly KM, Choi B. Hemoporfin-mediated photodynamic therapy on normal vasculature: implications for phototherapy on port-wine stain birthmarks. J Clin Translat Res. 2016;2(30):107–11.

    CAS  Google Scholar 

  82. Gu Y, Huang NY, Liang J, Pan YM, Liu FG. Clinical study of 1949 cases of port wine stains treated with vascular photody- namic therapy (Gu’s pdt). Ann Dermatol Venereol. 2007;134:241–4.

    CAS  PubMed  Google Scholar 

  83. Xiao Q, Li Q, Yuan KH, Cheng B. Photodynamic therapy of port-wine stains: long-term efficacy and complication in Chinese patients: photodynamic therapy of port-wine stains. J Dermatol. 2011;38:1146–52.

    CAS  PubMed  Google Scholar 

  84. Qin ZP, Li KL, Ren L, Liu XJ. Photodynamic therapy of port wine stains-a report of 238 cases. Photodiagn Photodyn Ther. 2007;4:53–9.

    Google Scholar 

  85. Zhao Y, Zhou Z, Zhou G, et al. Efficacy and safety of hemoporfin in photodynamic therapy for port-wine stain: a multicenter and open-labeled phase IIa study. Photodermatol Photoimmunol Photomed. 2011;27:17–23.

    CAS  PubMed  Google Scholar 

  86. Tang Y, Xie H, Li J, Jian D. The association between treatment reactions and treatment efficiency of Hemoporfin-photodynamic therapy on port wine stains: a prospective double blinded randomized controlled trial. Photodiagn Photodyn Ther. 2017;18:171–8.

    CAS  Google Scholar 

  87. Kelly KM. Current treatment options for port wine stain birthmarks. Photodiagn Photodyn Ther. 2007;4(3):147–8.

    Google Scholar 

  88. Admani S, Krakowski AC, Nelson JS. Beneficial effects of early pulsed dye laser therapy in individuals with infantile hemangiomas. Dermatol Surg. 2012;38:1732–8.

    CAS  PubMed  Google Scholar 

  89. Chinnadurai S, Sathe NA, Surawicz T. Laser treatment of infantile hemangioma: a systematic review. Lasers Surg Med. 2016;48(3):221–33.

    PubMed  Google Scholar 

  90. Kwon SH, Choi JW, Byun SY, et al. Effect of early long-pulsed pulsed dye laser treatment in infantile hemagniomas. Dermatol Surg. 2014;40:405–11.

    CAS  PubMed  Google Scholar 

  91. Chen W, Yang C, Liu S, Yang S. Curative effect study of pulsed dye laser in the treatment of 43 patients with hand infantile hemangioma. Eur J Dermatol. 2014;24(1):76–9.

    CAS  PubMed  Google Scholar 

  92. Kaune KM, Lauerer P, Kietz S, et al. Combination therapy of infantile hemangiomas with pulsed dye laser and Nd:YAG laser is effective and safe. J Dtsch Dermatol Ges. 2014;12(6):473–8.

    PubMed  Google Scholar 

  93. Zhong SX, Tao YC, Zhou JF, Liu YY, Yao L, Li SS. Infantile hemangioma: clinical characteristics and efficacy of treatment with the long-pulsed 1064 nm neodymium-doped yttrium aluminum garnet laser in 794 Chinese patients. Pediatr Dermatol. 2015;32(4):495–500.

    PubMed  Google Scholar 

  94. Batta K, Goodyear HM, Moss C, Williams HC, Hiller L, Waters R. Randomised controlled study of early pulsed dye laser treatment of uncomplicated childhood haemangiomas: results of a 1-year analysis. Lancet. 2002;360:521–7.

    PubMed  Google Scholar 

  95. David LR, Malek MM, Argenta LC. Efficacy of pulse dye laser therapy for the treatment of ulcerated haemangiomas: a review of 78 patients. Br J Plast Surg. 2003;56(4):317–27.

    PubMed  Google Scholar 

  96. Cerrati EW, TM O, Chung H, Waner M. Diode laser for the treatment of telangiectasias following hemangioma involution. Otolaryngol Head Neck Surg. 2015;152(2):239–43.

    PubMed  Google Scholar 

  97. Alcántara González J, Boixeda P, Truchuelo Díez MT, López Gutiérrez JC, Olasolo PJ. Ablative fractional yttrium-scandium-gallium-garnet laser for scarring residual haemangiomas and scars secondary to their surgical treatment. J Eur Acad Dermatol Venereol. 2012;26(4):477–82.

    PubMed  Google Scholar 

  98. Brightman LA, Brauer JA, Terushkin V, Hunzeker C, Reddy KK, Weiss ET, Karen JK, Hale EK, Anolik R, Bernstein L, Geronemus RG. Ablative fractional resurfacing for involuted hemangioma residuum. Arch Dermatol. 2012;148(11):1294–8.

    PubMed  Google Scholar 

  99. Feng H, Kauvar AN. Successful treatment of a residual, thick, infantile Hemangioma in a darker phototype pediatric patient using the 755 nm long-pulsed alexandrite laser. Dermatol Surg. 2017;43:1514–6.

    CAS  PubMed  Google Scholar 

  100. Daramola OO, Chun RH, Nash JJ, Drolet BA, North PE, Jensen JN, Kerschner JE. Surgical treatment of infantile hemangioma in a multidisciplinary vascular anomalies clinic. Int J Pediatr Otorhinolaryngol. 2011;75(10):1271–4.

    PubMed  Google Scholar 

  101. Emir S, Gürlek Gökçebay D, Demirel F, Tunç B. Efficacy and safety of intralesional corticosteroid application for hemangiomas. Arch Dis Child. 2011;96(6):587–9.

    Google Scholar 

  102. Morkane C, Gregory JW, Watts P, Warner JT. Adrenal suppression following intralesional corticosteroids for periocular haemangiomas. Turk J Med Sci. 2015;45(2):335–8.

    Google Scholar 

  103. Qiu Y, Lin X, Ma G, Chang L, Jin Y, Chen H, Hu X. Eighteen cases of soft tissue atrophy after intralesional bleomycin A5 injections for the treatment of infantile hemangiomas: a long-term follow-up. Pediatr Dermatol. 2015;32(2):188–91.

    PubMed  Google Scholar 

  104. Torres-Pradilla M, Baselga E. Failures of intralesional propranolol in infaile hemangiomas. Pediatr Dermatol. 2014;31(2):156–8.

    PubMed  Google Scholar 

  105. Ma G, Wu P, Lin X, et al. Fractional carbon dioxide laser-assisted drug delivery of topical timolol solution for the treatment of deep infantile hemangioma: a pilot study. Ped Dermatol. 2014;31(3):386–91.

    Google Scholar 

  106. Reischle S, Schuller-Petrovic S. Treatment of capillary hemangiomas of early childhood with a new method of cryosurgery. J Am Acad Dermatol. 2000;42:809–13.

    CAS  PubMed  Google Scholar 

  107. Brightman LA, Geronemus RG, Reddy KK. Laser treatment of port-wine stains. Clin Cosmet Investig Dermatol. 2015;8:27–33.

    PubMed  PubMed Central  Google Scholar 

  108. Ortiz AE, Ross EV. A complication of an eyelid hemangioma treated with a long-pulsed 1064 nm Nd:YAG laser. Lasers Surg Med. 2010;42(10):736–7.

    PubMed  Google Scholar 

  109. Reyes BA, Geronemus R. Treatment of port-wine stains during childhood with the flashlamp-pulsed pulsed dye laser. J Am Acad Dermatol. 1990;23:1142–8.

    CAS  PubMed  Google Scholar 

  110. Hzura GJ, Geronemus RG, Dover JS, Arndt KA. Lasers in dermatology—1003. Arch Dermatol. 1993;129:1026–35.

    Google Scholar 

  111. Cattano D, Young C, Straiko MM, Olney JW. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106:1712–4.

    CAS  PubMed  Google Scholar 

  112. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rizzi S, Ori C, Jevtovic-Todorovic V. Timing versus duration: determinants of anesthesia-induced developmental apoptosis in the young mammalian brain. Ann N Y Acad Sci. 2010;1199:43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun LS, Li G, Miller TL, et al. Association between a single general anesthesia exposure before age 36 montsh and neurocognitive outcomes in later childhood. JAMA. 2016;315(21):2312–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Glatz P, Sandin RH, Pedersen NL, et al. Association of anesthesia and surgery during childhood with long-term academic performance. JAMA Pediatr. 2017;2:171(1).

    Google Scholar 

  116. Grevelink JM, White VR, Bonoan R, Denman WT. Pulsed laser treatment in children and the use of anesthesia. J Am Acad Dermatol. 1997;37:75–81.

    CAS  PubMed  Google Scholar 

  117. Cunningham BB, Gigler V, Wang K, Eichenfield LF, Friedlander SF, et al. General anesthesia for pediatric dermatologic procedures: risk sand complications. Arch Dermatol. 2005;141(5):573–6.

    PubMed  Google Scholar 

  118. Terushkin V, Brauer J, Bernstein L, Geronemus R. Effect of general anesthesia on neurodevelopmental abnormalities in children undergoing treatment of vascular anomalies with laser surgery: a retrospective review. Dermatol Surg. 2017;43(4):534–40.

    CAS  PubMed  Google Scholar 

  119. Stier MF, Click SA, Hirsch RJ. Laser treatment of pediatric vascular lesions: port wine stains and hemangiomas. J Am Acad Dermatol. 2008;58(2):261–85.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Krakowski .

Editor information

Editors and Affiliations

Additional information

Disclaimer: The views expressed in this chapter are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government. Dr. Spring is a military service member. This work was prepared as part of her official duties. Title 17, USC, § 105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17, USC, § 101 defines a US Government work as a work prepared by a military service member or employee of the US Government as part of that person’s official duties.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spring, L.K., Krakowski, A.C. (2019). Port-Wine Birthmark and Hemangioma. In: Alam, M. (eds) Evidence-Based Procedural Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-02023-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02023-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02022-4

  • Online ISBN: 978-3-030-02023-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics