Skip to main content

Towards Patient-Specific Mitral Valve Surgical Simulations

  • Chapter
  • First Online:
  • 731 Accesses

Abstract

Ischemic mitral regurgitation (IMR) occurs when a mitral valve (MV) is rendered incompetent by left ventricular (LV) remodeling induced by a myocardial infarction (MI). Hemodynamically significant, IMR affects at least 300,000 Americans. This important clinical problem is expected to grow substantially during the next 20 years as the population ages. MV repair with undersized ring annuloplasty has been the preferred treatment for IMR. However, 1/3 of all patients treated this way develop significant recurrent IMR within 6 months. Using real-time 3D echocardiography (rt-3DE) image analysis software, it has been demonstrated that IMR in humans is etiologically heterogeneous. In one subset of patients the predominant cause of IMR is annular dilatation and flattening; in the remaining patients, leaflet tethering is the dominant pathology. It has been demonstrated that recurrent IMR after ring annuloplasty occurs most commonly when leaflet tethering is the primary cause of IMR. There is now agreement that adjunctive procedures are required to treat IMR caused by leaflet tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We thus present a state-of-the-art means to produce patient-specific MV computational models, which can directly utilize rt-3DE imaging data that can be used develop quantitatively optimized devices and procedures for MV repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atluri P, Panlilio CM, Liao GP, Suarez EE, McCormick RC, Hiesinger W, Cohen JE, Smith MJ, Patel AB, Feng W, Woo YJ. Transmyocardial revascularization to enhance myocardial vasculogenesis and hemodynamic function. J Thorac Cardiovasc Surg. 2008;135(2):283–91, 291.e1; discussion 91. https://doi.org/10.1016/j.jtcvs.2007.09.043. Epub 2008/02/05.

    Article  CAS  PubMed  Google Scholar 

  2. Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103(13):1759–64. Epub 2001/04/03.

    Article  CAS  PubMed  Google Scholar 

  3. Lamas GA, Mitchell GF, Flaker GC, Smith SC Jr, Gersh BJ, Basta L, Moye L, Braunwald E, Pfeffer MA. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation. 1997;96(3):827–33. Epub 1997/08/05.

    Article  CAS  PubMed  Google Scholar 

  4. Trichon BH, Glower DD, Shaw LK, Cabell CH, Anstrom KJ, Felker GM, O’Connor CM. Survival after coronary revascularization, with and without mitral valve surgery, in patients with ischemic mitral regurgitation. Circulation. 2003;108(Suppl 1):II103–10. https://doi.org/10.1161/01.cir.0000087656.10829.df. Epub 2003/09/13.

    Article  PubMed  Google Scholar 

  5. Borger MA, Alam A, Murphy PM, Doenst T, David TE. Chronic ischemic mitral regurgitation: repair, replace or rethink? Ann Thorac Surg. 2006;81(3):1153–61. https://doi.org/10.1016/j.athoracsur.2005.08.080. Epub 2006/02/21.

    Article  PubMed  Google Scholar 

  6. Trichon BH, Felker GM, Shaw LK, Cabell CH, O’Connor CM. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol. 2003;91(5):538–43. Epub 2003/03/05.

    Article  PubMed  Google Scholar 

  7. Gillinov AM, Wierup PN, Blackstone EH, Bishay ES, Cosgrove DM, White J, Lytle BW, McCarthy PM. Is repair preferable to replacement for ischemic mitral regurgitation? J Thorac Cardiovasc Surg. 2001;122(6):1125–41.

    Article  CAS  PubMed  Google Scholar 

  8. Grossi EA, Goldberg JD, LaPietra A, Ye X, Zakow P, Sussman M, Delianides J, Culliford AT, Esposito RA, Ribakove GH, Galloway AC, Colvin SB. Ischemic mitral valve reconstruction and replacement: comparison of long-term survival and complications. J Thorac Cardiovasc Surg. 2001;122(6):1107–24. https://doi.org/10.1067/mtc.2001.116945. Epub 2001/12/01.

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD, American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):2438–88. https://doi.org/10.1016/j.jacc.2014.02.537. Epub 2014/03/08.

    Article  PubMed  Google Scholar 

  10. McGee EC, Gillinov AM, Blackstone EH, Rajeswaran J, Cohen G, Najam F, Shiota T, Sabik JF, Lytle BW, McCarthy PM, Cosgrove DM. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2004;128(6):916–24. https://doi.org/10.1016/j.jtcvs.2004.07.037.

    Article  PubMed  Google Scholar 

  11. Hung J, Papakostas L, Tahta SA, Hardy BG, Bollen BA, Duran CM, Levine RA. Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation. 2004;110(11 Suppl 1):II85–90. https://doi.org/10.1161/01.CIR.0000138192.65015.45. Epub 2004/09/15.

    Article  PubMed  Google Scholar 

  12. Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, Smith PK, Hung JW, Blackstone EH, Puskas JD. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med. 2014;370(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  13. Mihaljevic T, Lam BK, Rajeswaran J, Takagaki M, Lauer MS, Gillinov AM, Blackstone EH, Lytle BW. Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation. J Am Coll Cardiol. 2007;49(22):2191–201. https://doi.org/10.1016/j.jacc.2007.02.043. Epub 2007/06/05.

    Article  PubMed  Google Scholar 

  14. Kron IL, Hung J, Overbey JR, Bouchard D, Gelijns AC, Moskowitz AJ, Voisine P, O’Gara PT, Argenziano M, Michler RE, Gillinov M, Puskas JD, Gammie JS, Mack MJ, Smith PK, Sai-Sudhakar C, Gardner TJ, Ailawadi G, Zeng X, O’Sullivan K, Parides MK, Swayze R, Thourani V, Rose EA, Perrault LP, Acker MA, CTSN Investigators. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2015;149(3):752–61.e1. https://doi.org/10.1016/j.jtcvs.2014.10.120. Epub 2014/12/17.

    Article  PubMed  Google Scholar 

  15. Bouma W, Lai EK, Levack MM, Shang EK, Pouch AM, Eperjesi TJ, Plappert TJ, Yushkevich PA, Mariani MA, Khabbaz KR, Gleason TG, Mahmood F, Acker MA, Woo YJ, Cheung AT, Jackson BM, Gorman JH 3rd, Gorman RC. Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral annuloplasty. Ann Thorac Surg. 2016;101(2):567–75. https://doi.org/10.1016/j.athoracsur.2015.09.076.

    Article  PubMed  Google Scholar 

  16. Gorman RC, McCaughan JS, Ratcliffe MB, Gupta KB, Streicher JT, Ferrari VA, St John-Sutton MG, Bogen DK, Edmunds LH Jr. Pathogenesis of acute ischemic mitral regurgitation in three dimensions. J Thorac Cardiovasc Surg. 1995;109(4):684–93.

    Article  CAS  PubMed  Google Scholar 

  17. Gorman JH 3rd, Gorman RC, Jackson BM, Enomoto Y, St John-Sutton MG, Edmunds LH Jr. Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Ann Thorac Surg. 2003;76(5):1556–63. https://doi.org/10.1016/S0003-4975(03)00891-9. pii: S0003497503008919. Epub 2003/11/07.

    Article  PubMed  Google Scholar 

  18. Tibayan FA, Rodriguez F, Langer F, Zasio MK, Bailey L, Liang D, Daughters GT, Ingels NB Jr, Miller DC. Annular remodeling in chronic ischemic mitral regurgitation: ring selection implications. Ann Thorac Surg. 2003;76(5):1549–54; discussion 54–5. https://doi.org/10.1016/S0003-4975(03)00880-4. pii: S0003497503008804. Epub 2003/11/07.

    Article  PubMed  Google Scholar 

  19. Minakawa M, Robb JD, Morital M, Koomalsinghl KJ, Vergnat M, Gillespie MJ, Gorman JH 3rd, Gorman RC. A model of ischemic mitral regurgitation in pigs with three-dimensional echocardiographic assessment. J Heart Valve Dis. 2014;23(6):713–20. Epub 2015/03/21.

    PubMed  PubMed Central  Google Scholar 

  20. Jassar AS, Vergnat M, Jackson BM, McGarvey JR, Cheung AT, Ferrari G, Woo YJ, Acker MA, Gorman RC, Gorman JH. Regional annular geometry in patients with mitral regurgitation: implications for annuloplasty ring selection. Ann Thorac Surg. 2014;97(1):64–70.

    Article  PubMed  Google Scholar 

  21. Otsuji Y, Handschumacher MD, Schwammenthal E, Jiang L, Song JK, Guerrero JL, Vlahakes GJ, Levine RA. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997;96(6):1999–2008.

    Article  CAS  PubMed  Google Scholar 

  22. Srichai MB, Grimm RA, Stillman AE, Gillinov AM, Rodriguez LL, Lieber ML, Lara A, Weaver JA, McCarthy PM, White RD. Ischemic mitral regurgitation: impact of the left ventricle and mitral valve in patients with left ventricular systolic dysfunction. Ann Thorac Surg. 2005;80(1):170–8. https://doi.org/10.1016/j.athoracsur.2005.01.068. Epub 2005/06/25.

    Article  PubMed  Google Scholar 

  23. Gorman JH 3rd, Jackson BM, Enomoto Y, Gorman RC. The effect of regional ischemia on mitral valve annular saddle shape. Ann Thorac Surg. 2004;77(2):544–8.

    Article  PubMed  Google Scholar 

  24. Ryan LP, Jackson BM, Parish LM, Plappert TJ, St John-Sutton MG, Gorman JH 3rd, Gorman RC. Regional and global patterns of annular remodeling in ischemic mitral regurgitation. Ann Thorac Surg. 2007;84(2):553–9. https://doi.org/10.1016/j.athoracsur.2007.04.016. Epub 2007/07/24.

    Article  PubMed  Google Scholar 

  25. Vergnat M, Jassar AS, Jackson BM, Ryan LP, Eperjesi TJ, Pouch AM, Weiss SJ, Cheung AT, Acker MA, Gorman JH 3rd, Gorman RC. Ischemic mitral regurgitation: a quantitative three-dimensional echocardiographic analysis. Ann Thorac Surg. 2011;91(1):157–64. https://doi.org/10.1016/j.athoracsur.2010.09.078. Epub 2010/12/22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuwahara E, Otsuji Y, Iguro Y, Ueno T, Zhu F, Mizukami N, Kubota K, Nakashiki K, Yuasa T, Yu B, Uemura T, Takasaki K, Miyata M, Hamasaki S, Kisanuki A, Levine RA, Sakata R, Tei C. Mechanism of recurrent/persistent ischemic/functional mitral regurgitation in the chronic phase after surgical annuloplasty: importance of augmented posterior leaflet tethering. Circulation. 2006;114(1 Suppl):I529–34. https://doi.org/10.1161/CIRCULATIONAHA.105.000729. Epub 2006/07/06.

    Article  PubMed  Google Scholar 

  27. Khang A, Buchanan RM, Ayoub S, Rego BV, Lee CH, Ferrari G, Anseth KS, Sacks MS. Mechanobiology of the heart valve interstitial cell: Simulation, experiment, and discovery. In: Verbruggen SW, editor. Mechanobiology in health and disease, vol. 2018. London: Elsevier; 2018. p. 249–83.

    Chapter  Google Scholar 

  28. Sacks MS, Khalighi A, Rego B, Ayoub S, Drach A. On the need for multi-scale geometric modelling of the mitral heart valve. Healthc Technol Lett. 2017;4(5):150.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rego BV, Ayoub S, Khalighi AH, Drach A, Gorman JH, Gorman RC, Sacks MS. Alterations in mechanical properties and in vivo geometry of the mitral valve following myocardial infarction. Summer biomechanics, bioengineering and biotransport conference, Tucson, AZ, USA; 2017.

    Google Scholar 

  30. Khalighi AH, Drach A, Sacks MS. Patient-specific mitral valve annuloplasty repair: The optimal ring design for treating ischemic mitral regurgitation. Summer biomechanics, bioengineering and biotransport conference, Tucson, AZ, USA; 2017.

    Google Scholar 

  31. Carpentier A. [Reconstructive valvuloplasty. A new technique of mitral valvuloplasty]. La Presse medicale. 1969;77(7):251–3.

    Google Scholar 

  32. Carpentier A, Deloche A, Dauptain J, Soyer R, Blondeau P, Piwnica A, Dubost C, McGoon DC. A new reconstructive operation for correction of mitral and tricuspid insufficiency. J Thorac Cardiovasc Surg. 1971;61(1):1–13.

    CAS  PubMed  Google Scholar 

  33. Carpentier A. Cardiac valve surgery—the “French correction”. J Thorac Cardiovasc Surg. 1983;86(3):323–37.

    CAS  PubMed  Google Scholar 

  34. Ryan LP, Jackson BM, Eperjesi TJ, Plappert TJ, St John-Sutton M, Gorman RC, Gorman JH 3rd. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J Thorac Cardiovasc Surg. 2008;136(3):726–34. https://doi.org/10.1016/j.jtcvs.2008.02.073. Epub 2008/09/23.

    Article  PubMed  Google Scholar 

  35. Ryan LP, Jackson BM, Hamamoto H, Eperjesi TJ, Plappert TJ, St John-Sutton M, Gorman RC, Gorman JH 3rd. The influence of annuloplasty ring geometry on mitral leaflet curvature. Ann Thorac Surg. 2008;86(3):749–60; discussion 60. https://doi.org/10.1016/j.athoracsur.2008.03.079. pii: S0003-4975(08)00726-1. Epub 2008/08/30.

    Article  PubMed  Google Scholar 

  36. Robb JD, Minakawa M, Koomalsingh KJ, Shuto T, Jassar AS, Ratcliffe SJ, Gorman RC, Gorman JH 3rd. Posterior leaflet augmentation improves leaflet tethering in repair of ischemic mitral regurgitation. Eur J Cardiothorac Surg. 2011;40:1501–7. https://doi.org/10.1016/j.ejcts.2011.02.079. Epub 2011/05/07.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jassar AS, Minakawa M, Shuto T, Robb JD, Koomalsingh KJ, Levack MM, Vergnat M, Eperjesi TJ, Jackson BM, Gorman JH III. Posterior leaflet augmentation in ischemic mitral regurgitation increases leaflet coaptation and mobility. Ann Thorac Surg. 2012;94(5):1438–45.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Onorati F, Rubino AS, Marturano D, Pasceri E, Santarpino G, Zinzi S, Mascaro G, Renzulli A. Midterm clinical and echocardiographic results and predictors of mitral regurgitation recurrence following restrictive annuloplasty for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2009;138(3):654–62. https://doi.org/10.1016/j.jtcvs.2009.01.020. Epub 2009/08/25.

    Article  PubMed  Google Scholar 

  39. Kron IL, Green GR, Cope JT. Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. Ann Thorac Surg. 2002;74(2):600–1. Epub 2002/08/14.

    Article  PubMed  Google Scholar 

  40. Masuyama S, Marui A, Shimamoto T, Nonaka M, Tsukiji M, Watanabe N, Ikeda T, Yoshida K, Komeda M. Chordal translocation for ischemic mitral regurgitation may ameliorate tethering of the posterior and anterior mitral leaflets. J Thorac Cardiovasc Surg. 2008;136(4):868–75. https://doi.org/10.1016/j.jtcvs.2008.06.034. Epub 2008/10/29.

    Article  PubMed  Google Scholar 

  41. Arai H, Itoh F, Someya T, Oi K, Tamura K, Tanaka H. New surgical procedure for ischemic/functional mitral regurgitation: mitral complex remodeling. Ann Thorac Surg. 2008;85(5):1820–2. https://doi.org/10.1016/j.athoracsur.2007.11.073. Epub 2008/04/30.

    Article  PubMed  Google Scholar 

  42. Fayad G, Marechaux S, Modine T, Azzaoui R, Larrue B, Ennezat PV, Bekhti H, Decoene C, Deklunder G, Le Tourneau T, Warembourg H. Chordal cutting VIA aortotomy in ischemic mitral regurgitation: surgical and echocardiographic study. J Card Surg. 2008;23(1):52–7. https://doi.org/10.1111/j.1540-8191.2007.00503.x. Epub 2008/02/23.

    Article  PubMed  Google Scholar 

  43. Kincaid EH, Riley RD, Hines MH, Hammon JW, Kon ND. Anterior leaflet augmentation for ischemic mitral regurgitation. Ann Thorac Surg. 2004;78(2):564–8; discussion 8. https://doi.org/10.1016/j.athoracsur.2004.02.040. Epub 2004/07/28.

    Article  PubMed  Google Scholar 

  44. de Varennes B, Chaturvedi R, Sidhu S, Cote AV, Shan WL, Goyer C, Hatzakorzian R, Buithieu J, Sniderman A. Initial results of posterior leaflet extension for severe type IIIb ischemic mitral regurgitation. Circulation. 2009;119(21):2837–43. https://doi.org/10.1161/CIRCULATIONAHA.108.831412. Epub 2009/05/20.

    Article  CAS  PubMed  Google Scholar 

  45. Dobre M, Koul B, Rojer A. Anatomic and physiologic correction of the restricted posterior mitral leaflet motion in chronic ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2000;120(2):409–11. https://doi.org/10.1067/mtc.2000.106521. Epub 2000/08/05.

    Article  CAS  PubMed  Google Scholar 

  46. Rendon F, Aramendi JI, Rodrigo D, Baraldi C, Martinez P. Patch enlargement of the posterior mitral leaflet in ischemic regurgitation. Asian Cardiovasc Thorac Ann. 2002;10(3):248–50. https://doi.org/10.1177/021849230201000313. Epub 2002/09/06.

    Article  PubMed  Google Scholar 

  47. Rabbah J-P, Saikrishnan N, Yoganathan AP. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng. 2013;41(2):305–15. https://doi.org/10.1007/s10439-012-0651-z.

    Article  PubMed  Google Scholar 

  48. Fan R, Sacks MS. Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech. 2014;47:2043–54.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Drach A, Khalighi AH, Sacks MS. A comprehensive pipeline for multi-resolution modeling of the mitral valve: validation, computational efficiency, and predictive capability. Int J Numer Methods Biomed Eng. 2017;34:e2921. https://doi.org/10.1002/cnm.2921. Epub 2017/08/05.

    Article  Google Scholar 

  50. Pouch AM, Jackson BM, Yushkevich PA, Gorman JH 3rd, Gorman RC. 4D-transesophageal echocardiography and emerging imaging modalities for guiding mitral valve repair. Ann Cardiothorac Surg. 2015;4(5):461–2. https://doi.org/10.3978/j.issn.2225-319X.2015.02.01.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jassar AS, Brinster CJ, Vergnat M, Robb JD, Eperjesi TJ, Pouch AM, Cheung AT, Weiss SJ, Acker MA, Gorman JH 3rd, Gorman RC, Jackson BM. Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability. Ann Thorac Surg. 2011;91(1):165–71. https://doi.org/10.1016/j.athoracsur.2010.10.034. Epub 2010/12/22.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH 3rd, Sacks MS. A non-invasive method for the determination of in vivo mitral valve leaflet strains. Int J Numer Meth Biomed Eng. https://doi.org/10.1002/cnm.3142; e3142.

    Article  PubMed  Google Scholar 

  53. Khalighi AH, Rego BV, Drach A, Gorman RC, Gorman JH 3rd, Sacks MS. Development of a functionally equivalent model of the mitral valve chordae tendineae through topology optimization. Ann Biomed Eng. https://doi.org/10.1007/s10439-018-02122-y.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aggarwal A, Aguilar VS, Lee C-H, Ferrari G, Gorman JH, Gorman RC, Sacks MS. Patient-specific modeling of heart valves: from image to simulation. In: Ourselin S, Rueckert D, Smith N, editors. Functional imaging and modeling of the heart. London: Springer; 2013. p. 141–9.

    Chapter  Google Scholar 

  55. Lee C-H, Oomen PA, Rabbah J, Yoganathan A, Gorman R, Gorman J III, Amini R, Sacks M. A high-fidelity and micro-anatomically accurate 3D finite element model for simulations of functional mitral valve. In: Ourselin S, Rueckert D, Smith N, editors. Functional imaging and modeling of the heart. Berlin: Springer; 2013. p. 416–24.

    Chapter  Google Scholar 

  56. Lee CH, Amini R, Gorman RC, Gorman JH 3rd, Sacks MS. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment. J Biomech. 2014;47(9):2055–63. https://doi.org/10.1016/j.jbiomech.2013.10.058.

    Article  PubMed  Google Scholar 

  57. Lee C-H, Amini R, Sakamoto Y, Carruthers CA, Aggarwal A, Gorman RC, Gorman JH III, Sacks MS. Mitral valves: a computational framework. In: Multiscale modeling in biomechanics and mechanobiology. London: Springer; 2015. p. 223–55.

    Google Scholar 

  58. Rego BV, Wells SM, Lee CH, Sacks MS. Mitral valve leaflet remodelling during pregnancy: insights into cell-mediated recovery of tissue homeostasis. J R Soc Interface. 2016;13(125):20160709. https://doi.org/10.1098/rsif.2016.0709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee CH, Zhang W, Feaver K, Gorman RC, Gorman JH 3rd, Sacks MS. On the in vivo function of the mitral heart valve leaflet: insights into tissue-interstitial cell biomechanical coupling. Biomech Model Mechanobiol. 2017;16:1613–32. https://doi.org/10.1007/s10237-017-0908-4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee CH, Rabbah JP, Yoganathan AP, Gorman RC, Gorman JH 3rd, Sacks MS. On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomech Model Mechanobiol. 2015;14(6):1281–302. https://doi.org/10.1007/s10237-015-0674-0.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Khalighi AH, Drach A, ter Huurne FM, Lee C-H, Bloodworth C, Pierce EL, Jensen MO, Yoganathan AP, Sacks MS. A comprehensive framework for the characterization of the complete mitral valve geometry for the development of a population-averaged model. In: Functional imaging and modeling of the heart. Cham: Springer; 2015. p. 164–71.

    Chapter  Google Scholar 

  62. Lee CH, Zhang W, Liao J, Carruthers CA, Sacks JI, Sacks MS. On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys J. 2015;108(8):2074–87. https://doi.org/10.1016/j.bpj.2015.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khalighi AH, Drach A, Bloodworth CH 4th, Pierce EL, Yoganathan AP, Gorman RC, Gorman JH 3rd, Sacks MS. Mitral valve chordae tendineae: topological and geometrical characterization. Ann Biomed Eng. 2016;45:378–93. https://doi.org/10.1007/s10439-016-1775-3.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bloodworth CH 4th, Pierce EL, Easley TF, Drach A, Khalighi AH, Toma M, Jensen MO, Sacks MS, Yoganathan AP. Ex vivo methods for informing computational models of the mitral valve. Ann Biomed Eng. 2016;45:496–507. https://doi.org/10.1007/s10439-016-1734-z.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Khalighi AH, Drach A, Gorman RC, Gorman JH 3rd, Sacks MS. Multi-resolution geometric modeling of the mitral heart valve leaflets. Biomech Model Mechanobiol. 2018;17:351–66. https://doi.org/10.1007/s10237-017-0965-8. Epub 2017/10/07.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Heart, Lung, and Blood Institute of the National Institutes of Health under grant no. R01-HL119297, the National Science Foundation grant no. DGE-1610403, and the American Heart Association grant no. 18PRE34030258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalighi, A.H., Rego, B.V., Drach, A., Gorman, R.C., Gorman, J.H., Sacks, M.S. (2018). Towards Patient-Specific Mitral Valve Surgical Simulations. In: Sacks, M., Liao, J. (eds) Advances in Heart Valve Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-01993-8_18

Download citation

Publish with us

Policies and ethics